scispace - formally typeset
Search or ask a question
Author

Emmanuel Flahaut

Bio: Emmanuel Flahaut is an academic researcher from University of Toulouse. The author has contributed to research in topics: Carbon nanotube & Raman spectroscopy. The author has an hindex of 50, co-authored 303 publications receiving 12609 citations. Previous affiliations of Emmanuel Flahaut include Chubu University & University of Oxford.


Papers
More filters
Journal ArticleDOI
01 Apr 2001-Carbon
TL;DR: In this article, the theoretical external specific surface area of single and multi-walled carbon nanotubes and of carbon-nanotube bundles is calculated as a function of their characteristics.

1,836 citations

Journal ArticleDOI
TL;DR: In this paper, the percolation of the carbon nanotubes was studied and discussed in relation to the nature of the matrix, the electrical conductivity, the fracture strength and the fracture toughness.

530 citations

Journal ArticleDOI
TL;DR: It is reported for the first time that carbon nanotubes activate human complement via both classical and alternative pathways, and it is concluded that complement activation by nanot tubes is consistent with reported adjuvant effects, and might also in various circumstances promote damaging effects of excessive complement activation.

407 citations

Journal ArticleDOI
TL;DR: In this article, an original catalytic method that produces ceramic-matrix composite powders that contain in situ grown nanotubes is described, and the synthesis parameters that favour the obtention of very high quantities of carbon-nanotubes are discussed.

403 citations

Journal ArticleDOI
02 Nov 2018-ACS Nano
TL;DR: In this paper, the authors discuss synthesis and characterization of GBMs as well as human and environmental hazard assessment of GBM using in vitro and in vivo model systems with the aim to understand the properties that underlie the biological effects of these materials; not all GBMs are alike, and it is essential that disentangle the structure-activity relationships for this class of materials.
Abstract: Graphene and its derivatives are heralded as ‘miracle’ materials with manifold applications in different sectors of society from electronics to energy storage to medicine. The increasing exploitation of graphene-based materials (GBMs) necessitates a comprehensive evaluation of the potential impact of these materials on human health and the environment. Here we discuss synthesis and characterization of GBMs as well as human and environmental hazard assessment of GBMs using in vitro and in vivo model systems with the aim to understand the properties that underlie the biological effects of these materials; not all GBMs are alike, and it is essential that we disentangle the structure-activity relationships for this class of materials.

397 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: A review of recent advances in carbon nanotubes and their composites can be found in this article, where the authors examine the research work reported in the literature on the structure and processing of carbon Nanotubes.

4,709 citations

Journal ArticleDOI
TL;DR: The features of nanoparticle therapeutics that distinguish them from previous anticancer therapies are highlighted, and how these features provide the potential for therapeutic effects that are not achievable with other modalities are described.
Abstract: Nanoparticles — particles in the size range 1–100 nm — are emerging as a class of therapeutics for cancer. Early clinical results suggest that nanoparticle therapeutics can show enhanced efficacy, while simultaneously reducing side effects, owing to properties such as more targeted localization in tumours and active cellular uptake. Here, we highlight the features of nanoparticle therapeutics that distinguish them from previous anticancer therapies, and describe how these features provide the potential for therapeutic effects that are not achievable with other modalities. While large numbers of preclinical studies have been published, the emphasis here is placed on preclinical and clinical studies that are likely to affect clinical investigations and their implications for advancing the treatment of patients with cancer.

3,975 citations