scispace - formally typeset
Search or ask a question
Author

Emmanuel P. Giannelis

Bio: Emmanuel P. Giannelis is an academic researcher from Cornell University. The author has contributed to research in topics: Nanocomposite & Polymer. The author has an hindex of 88, co-authored 387 publications receiving 38528 citations. Previous affiliations of Emmanuel P. Giannelis include Foundation for Research & Technology – Hellas & University of Ljubljana.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a new, versatile and environmentally benign synthesis approach by polymer melt intercalation is discussed. But, unlike in-situ polymerization and solution inter-calation, melt interalation involves mixing the layered silicates with the polymer and heating the mixture above the softening point of the polymer.
Abstract: Polymer nanocomposites with layered silicates as the inorganic phase (reinforcement) are discussed. The materials design and synthesis rely on the ability of layered silicates to intercalate in the galleries between their layers a wide range of monomers and polymers. Special emphasis is placed on a new, versatile and environmentally benign synthesis approach by polymer melt intercalation. In contrast to in-situ polymerization and solution intercalation, melt intercalation involves mixing the layered silicate with the polymer and heating the mixture above the softening point of the polymer. Compatibility with various polymers is accomplished by derivatizing the silicates with alkyl ammonium cations via an ion exchange reaction. By fine-tuning the surface characteristics nanodispersion (i. e. intercalation or delamination) can be accomplished. The resulting polymer layered silicate (PLS) nanocomposites exhibit properties dramatically different from their more conventional counterparts. For example, PLS nanocomposites can attain a particular degree of stiffness, strength and barrier properties with far less inorganic content than comparable glass- or mineral reinforced polymers and, therefore, they are far lighter in weight. In addition, PLS nanocomposites exhibit significant increase in thermal stability as well as self-extinguishing characteristics. The combination of improved properties, convenient processing and low cost has already led to a few commercial applications with more currently under development.

3,468 citations

Journal ArticleDOI
TL;DR: In this paper, the mechanism of flammability reduction of polypropylene-graft-maleic anhydride and polystyrene−layered-silicate nanocomposites using montmorillonite and fluorohectorite was investigated.
Abstract: Our continuing study of the mechanism of flammability reduction of polymer−layered-silicate nanocomposites has yielded results for polypropylene-graft-maleic anhydride and polystyrene−layered-silicate nanocomposites using montmorillonite and fluorohectorite. Cone calorimetry was used to measure the heat release rate and other flammability properties of the nanocomposites, under well-controlled combustion conditions. Both the polymer−layered-silicate nanocomposites and the combustion residues were studied by transmission electron microscopy and X-ray diffraction. We have found evidence for a common mechanism of flammability reduction. We also found that the type of layered silicate, nanodispersion, and processing degradation have an influence on the flammability reduction.

1,466 citations

Journal ArticleDOI
TL;DR: In this article, a polymer-ceramic nanocomposite was synthesized consisting of well-dispersed, two-dimensional layers of an organically modified mica-type silicate (MTS) within a degradable poly(e-caprolactone) matrix.
Abstract: A new polymer-ceramic nanocomposite has been synthesized consisting of well-dispersed, two-dimensional layers of an organically modified mica-type silicate (MTS) within a degradable poly(e-caprolactone) matrix. A protonated amino acid derivative of MTS was used to promote delamination/dispersion of the host layers and initiate ring-opening polymerization of e-caprolactone monomer, resulting in poly(e-caprolactone) chains that are ionically bound to the silicate layers. The polymer chains can be released from the silicate surface by a reverse ion-exchange reaction and were shown to be spectroscopically similar to pure poly(e-caprolactone). Thick films of the polymer nanocomposite exhibit a significant reduction in water vapor permeability that shows a linear dependence on silicate content. The permeability of nanocomposite containing as low as 4.8% silicate by volume was reduced by nearly an order of magnitude compared to pure poly(e-caprolactone)

1,223 citations

Book ChapterDOI
TL;DR: In this article, the static and dynamic properties of polymer-layered silicate nanocomposites are discussed, in the context of polymers in confined spaces and polymer brushes.
Abstract: The static and dynamic properties of polymer-layered silicate nanocomposites are discussed, in the context of polymers in confined spaces and polymer brushes. A wide range of experimental techniques as applied to these systems are reviewed, and the salient results from these are compared with a mean field thermodynamic model and non-equilibrium molecular dynamics simulations.

1,096 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations

Journal ArticleDOI
29 Aug 1997-Science
TL;DR: In this article, a general approach for multilayers by consecutive adsorption of polyanions and polycations has been proposed and has been extended to other materials such as proteins or colloids.
Abstract: Multilayer films of organic compounds on solid surfaces have been studied for more than 60 years because they allow fabrication of multicomposite molecular assemblies of tailored architecture. However, both the Langmuir-Blodgett technique and chemisorption from solution can be used only with certain classes of molecules. An alternative approach—fabrication of multilayers by consecutive adsorption of polyanions and polycations—is far more general and has been extended to other materials such as proteins or colloids. Because polymers are typically flexible molecules, the resulting superlattice architectures are somewhat fuzzy structures, but the absence of crystallinity in these films is expected to be beneficial for many potential applications.

9,593 citations

Journal ArticleDOI
TL;DR: An overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.
Abstract: There is intense interest in graphene in fields such as physics, chemistry, and materials science, among others. Interest in graphene's exceptional physical properties, chemical tunability, and potential for applications has generated thousands of publications and an accelerating pace of research, making review of such research timely. Here is an overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.

8,919 citations

Journal ArticleDOI
TL;DR: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency as mentioned in this paper, and many DSC research groups have been established around the world.
Abstract: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency. DSC research groups have been established around the worl ...

8,707 citations