scispace - formally typeset
Search or ask a question
Author

Emmanuelle Liger

Bio: Emmanuelle Liger is an academic researcher from University of Grenoble. The author has contributed to research in topics: Adsorption & Uranyl. The author has an hindex of 4, co-authored 4 publications receiving 956 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigated the kinetic effect of specific adsorption interactions on the chemical reduction of uranyl (UVIO22+) by ferrous iron, and derived a rate law for surface-catalyzed U(VI) reduction by Fe(II), d[U(VI)] dt =−k[≡ Fe III OFe II OH 0 ][U( VI)] ads where the bimolecular rate constant k has a value of 399 ± 25 M−1 min−1 at 25°C.

647 citations

Journal ArticleDOI
TL;DR: In this paper, the redox properties of FeII adsorbed onto a series of FeIII (oxyhydr)oxides (goethite, lepidocrocite, nano-sized ferric oxide hydrate (nano-FOH), and hydrous ferric oxides (HFO)) have been investigated by rest potential measurements at a platinum electrode, as a function of pH (−log 10[H+]) and surface coverage.

148 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that the initial rate of such reduction reactions is proportional to the FeIIIOFeIIOH° species concentration, in the same manner that the homogeneous oxygenation rate of Fe(II) is proportionally proportional to Fe(OH)2°(aq) concentration.

133 citations

Journal ArticleDOI
TL;DR: In this paper, the reduction reaction is coupled to the oxidation of Fe(II) sorbed on iron corrosion products such as hematite, which is indicated by the equilibrium E{sub h} values measured during uranium immobilization and PCE degradation reactions of zerovalent iron.
Abstract: Uranium (UO{sub 2}{sup 2+}) and chlorinated aliphatics [tetrachloroethane (PCE) and trichloroethane (TCE)] can be reduced and thus immobilized or degraded, respectively, by the same abiotic mechanism. In this mechanism the reduction reaction is coupled to the oxidation of Fe(II) sorbed on iron corrosion products such as hematite. This is indicated by the equilibrium E{sub h} values measured during uranium immobilization and PCE degradation reactions of zerovalent iron. These values fit closely with those measured in the Fe(II)-{alpha}Fe{sub 2}O{sub 3}-H{sub 2}O system (in the absence of U or PCE), not those of the Fe(o)/Fe(II) or H{sub 2}(g)/H{sub 2}O couples. Because iron (II) is very unstable in environments that are not strictly anaerobic, Fe(o) serves as a source of Fe(II). The reduction kinetic rate, analyzed in detail for the reduction of U(VI), is found to be a function of the concentration of OH{sup {minus}}, Fe{sup 2+} and reactive surface sites, and is given in terms of sorbed species concentrations by {l_brace}d[U(VI)]{sub ads}{r_brace}/dt = {l_brace}{minus}k{prime}[{triple_bond}FeOFeOH{sup 0}][U(VI)]{sub ads}{r_brace}. This rate law applies to organic pollutants as well, as long as they can be reduced by surface Fe(II): {l_brace}d[Pollutant]{r_brace}/dt = {l_brace}{minus}k{prime}[{triple_bond}FeOFeOH{sup 0}][Pollutant]{r_brace}. This mechanism suggests new possibilities for the improvement of low-cost decontamination techniques formore » U- and chlorinated aliphatic-rich waters.« less

72 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The sorption data indicate that, under most of the chemical conditions investigated in this study, reduction of As(V) in the presence of HFO or goethite would have only minor effects on or even decrease its mobility in the environment at near-neutral pH conditions.
Abstract: Arsenic derived from natural sources occurs in groundwater in many countries, affecting the health of millions of people. The combined effects of As(V) reduction and diagenesis of iron oxide minerals on arsenic mobility are investigated in this study by comparing As(V) and As(III) sorption onto amorphous iron oxide (HFO), goethite, and magnetite at varying solution compositions. Experimental data are modeled with a diffuse double layer surface complexation model, and the extracted model parameters are used to examine the consistency of our results with those previously reported. Sorption of As(V) onto HFO and goethite is more favorable than that of As(III) below pH 5−6, whereas, above pH 7−8, As(III) has a higher affinity for the solids. The pH at which As(V) and As(III) are equally sorbed depends on the solid-to-solution ratio and type and specific surface area of the minerals and is shifted to lower pH values in the presence of phosphate, which competes for sorption sites. The sorption data indicate tha...

2,115 citations

Journal ArticleDOI
TL;DR: Recent advances in the understanding of biogeochemical redox processes are highlighted and their impact on contaminant fate and transport, including future research needs are highlighted.
Abstract: Life and element cycling on Earth is directly related to electron transfer (or redox) reactions. An understanding of biogeochemical redox processes is crucial for predicting and protecting environmental health and can provide new opportunities for engineered remediation strategies. Energy can be released and stored by means of redox reactions via the oxidation of labile organic carbon or inorganic compounds (electron donors) by microorganisms coupled to the reduction of electron acceptors including humic substances, iron-bearing minerals, transition metals, metalloids, and actinides. Environmental redox processes play key roles in the formation and dissolution of mineral phases. Redox cycling of naturally occurring trace elements and their host minerals often controls the release or sequestration of inorganic contaminants. Redox processes control the chemical speciation, bioavailability, toxicity, and mobility of many major and trace elements including Fe, Mn, C, P, N, S, Cr, Cu, Co, As, Sb, Se, Hg, Tc, a...

1,029 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the kinetic effect of specific adsorption interactions on the chemical reduction of uranyl (UVIO22+) by ferrous iron, and derived a rate law for surface-catalyzed U(VI) reduction by Fe(II), d[U(VI)] dt =−k[≡ Fe III OFe II OH 0 ][U( VI)] ads where the bimolecular rate constant k has a value of 399 ± 25 M−1 min−1 at 25°C.

647 citations

Journal ArticleDOI
TL;DR: Model calculations confirm that sorption of particularly carbonate at common soil and groundwater concentrations reduces the sorption capacity of arsenic on ferrihydrite significantly, a cause for the high concentrations of arsenic in groundwater in Bangladesh.
Abstract: Surface complexation models are commonly used to predict the mobility of trace metals in aquifers. For arsenic in groundwater, surface complexation models cannot be used because the database is incomplete. Both carbonate and ferrous iron are often present at a high concentration in groundwater and will influence the sorption of arsenic, but the surface complexation constants are absent in the database of Dzombak and Morel. This paper presents the surface complexation constants for carbonate and ferrous iron on ferrihydrite as derived for the double-layer model. For ferrous iron the constants were obtained from published data supplemented by new experiments to determine the sorption on the strong sites of ferrihydrite. For carbonate the constants were derived from experiments by Zachara et al., who employed relatively low concentrations of carbonate. The double-layer model, optimized for low concentrations, was tested against sorption experiments of carbonate on goethite at higher concentration by Villalobos and Leckie, and reasonable agreement was found. Sorption was also estimated using linear free energy relations (LFER), and results compared well with our derived constants. Model calculations confirm that sorption of particularly carbonate at common soil and groundwater concentrations reduces the sorption capacity of arsenic on ferrihydrite significantly. The displacing effect of carbonate on sorbed arsenate and arsenite has been overlooked in many studies. It may be an important cause for the high concentrations of arsenic in groundwater in Bangladesh. Sediments containing high amounts of sorbed arsenic are deposited in surface water with low carbonate concentrations. Subsequently the sediments become exposed to groundwater with a high dissolved carbonate content, and arsenic is mobilized by displacement from the sediment surface.

639 citations