scispace - formally typeset
Search or ask a question
Author

Emo Welzl

Other affiliations: Saarland University, IEEE Computer Society, Leiden University  ...read more
Bio: Emo Welzl is an academic researcher from ETH Zurich. The author has contributed to research in topics: General position & Upper and lower bounds. The author has an hindex of 49, co-authored 203 publications receiving 9143 citations. Previous affiliations of Emo Welzl include Saarland University & IEEE Computer Society.


Papers
More filters
Journal ArticleDOI
TL;DR: The concept of an ɛ-net of a set of points for an abstract set of ranges is introduced and sufficient conditions that a random sample is an Â-net with any desired probability are given.
Abstract: We demonstrate the existence of data structures for half-space and simplex range queries on finite point sets ind-dimensional space,dÂ?2, with linear storage andO(nÂ?) query time, $$\alpha = \frac{{d(d - 1)}}{{d(d - 1) + 1}} + \gamma for all \gamma > 0$$ . These bounds are better than those previously published for alldÂ?2. Based on ideas due to Vapnik and Chervonenkis, we introduce the concept of an Â?-net of a set of points for an abstract set of ranges and give sufficient conditions that a random sample is an Â?-net with any desired probability. Using these results, we demonstrate how random samples can be used to build a partition-tree structure that achieves the above query time.

799 citations

Journal ArticleDOI
TL;DR: A simple randomized algorithm which solves linear programs withn constraints andd variables in expected time, and computes the lexicographically smallest nonnegative point satisfyingn given linear inequalities ind variables.
Abstract: We present a simple randomized algorithm which solves linear programs withn constraints andd variables in expected $$\min \{ O(d^2 2^d n),e^{2\sqrt {dIn({n \mathord{\left/ {\vphantom {n {\sqrt d }}} \right. \kern- ulldelimiterspace} {\sqrt d }})} + O(\sqrt d + Inn)} \}$$ time in the unit cost model (where we count the number of arithmetic operations on the numbers in the input); to be precise, the algorithm computes the lexicographically smallest nonnegative point satisfyingn given linear inequalities ind variables. The expectation is over the internal randomizations performed by the algorithm, and holds for any input. In conjunction with Clarkson's linear programming algorithm, this gives an expected bound of $$O(d^2 n + e^{O(\sqrt {dInd} )} ).$$ The algorithm is presented in an abstract framework, which facilitates its application to several other related problems like computing the smallest enclosing ball (smallest volume enclosing ellipsoid) ofn points ind-space, computing the distance of twon-vertex (orn-facet) polytopes ind-space, and others. The subexponential running time can also be established for some of these problems (this relies on some recent results due to Gartner).

411 citations

Proceedings ArticleDOI
01 Aug 1986
TL;DR: A new technique for half-space and simplex range query using random sampling to build a partition-tree structure and introduces the concept of anε-net for an abstract set of ranges to describe the desired result of this random sampling.
Abstract: We present a new technique for half-space and simplex range query using O(n) space and O(na) query time, where a 0. These bounds are better than those previously published for all d ≥ 2. The technique uses random sampling to build a partition-tree structure. We introduce the concept of an e-net for an abstract set of ranges to describe the desired result of this random sampling and give necessary and sufficient conditions that a random sample is an e-net with high probability. We illustrate the application of these ideas to other range query problems.

378 citations

Journal ArticleDOI
TL;DR: Upper and lower bounds for extremal problems defined for arrangements of lines, circles, spheres, and alike are presented and it is proved that the maximum number of edges boundingm cells in an arrangement ofn lines is Θ(m2/3n 2/3 +n), and that it isO(m3/2β(m) forn unit-circles.
Abstract: We present upper and lower bounds for extremal problems defined for arrangements of lines, circles, spheres, and alike. For example, we prove that the maximum number of edges boundingm cells in an arrangement ofn lines is ?(m2/3n2/3 +n), and that it isO(m2/3n2/3s(n) +n) forn unit-circles, wheres(n) (and laters(m, n)) is a function that depends on the inverse of Ackermann's function and grows extremely slowly. If we replace unit-circles by circles of arbitrary radii the upper bound goes up toO(m3/5n4/5s(n) +n). The same bounds (without thes(n)-terms) hold for the maximum sum of degrees ofm vertices. In the case of vertex degrees in arrangements of lines and of unit-circles our bounds match previous results, but our proofs are considerably simpler than the previous ones. The maximum sum of degrees ofm vertices in an arrangement ofn spheres in three dimensions isO(m4/7n9/7s(m, n) +n2), in general, andO(m3/4n3/4s(m, n) +n) if no three spheres intersect in a common circle. The latter bound implies that the maximum number of unit-distances amongm points in three dimensions isO(m3/2s(m)) which improves the best previous upper bound on this problem. Applications of our results to other distance problems are also given.

362 citations

Journal ArticleDOI
Emo Welzl1
TL;DR: It is shown that G S can be constructed in O(n 2 ) time and space for a set S of n nonintersecting line segments.

306 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Book
01 Jan 1991
TL;DR: A particular set of problems - all dealing with “good” colorings of an underlying set of points relative to a given family of sets - is explored.
Abstract: The use of randomness is now an accepted tool in Theoretical Computer Science but not everyone is aware of the underpinnings of this methodology in Combinatorics - particularly, in what is now called the probabilistic Method as developed primarily by Paul Erdoős over the past half century. Here I will explore a particular set of problems - all dealing with “good” colorings of an underlying set of points relative to a given family of sets. A central point will be the evolution of these problems from the purely existential proofs of Erdős to the algorithmic aspects of much interest to this audience.

6,594 citations

MonographDOI
01 Jan 2006
TL;DR: This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms, into planning under differential constraints that arise when automating the motions of virtually any mechanical system.
Abstract: Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms. The treatment is centered on robot motion planning but integrates material on planning in discrete spaces. A major part of the book is devoted to planning under uncertainty, including decision theory, Markov decision processes, and information spaces, which are the “configuration spaces” of all sensor-based planning problems. The last part of the book delves into planning under differential constraints that arise when automating the motions of virtually any mechanical system. Developed from courses taught by the author, the book is intended for students, engineers, and researchers in robotics, artificial intelligence, and control theory as well as computer graphics, algorithms, and computational biology.

6,340 citations

Proceedings ArticleDOI
23 May 1998
TL;DR: In this paper, the authors present two algorithms for the approximate nearest neighbor problem in high-dimensional spaces, for data sets of size n living in R d, which require space that is only polynomial in n and d.
Abstract: We present two algorithms for the approximate nearest neighbor problem in high-dimensional spaces. For data sets of size n living in R d , the algorithms require space that is only polynomial in n and d, while achieving query times that are sub-linear in n and polynomial in d. We also show applications to other high-dimensional geometric problems, such as the approximate minimum spanning tree. The article is based on the material from the authors' STOC'98 and FOCS'01 papers. It unifies, generalizes and simplifies the results from those papers.

4,478 citations

Journal ArticleDOI
TL;DR: The Voronoi diagram as discussed by the authors divides the plane according to the nearest-neighbor points in the plane, and then divides the vertices of the plane into vertices, where vertices correspond to vertices in a plane.
Abstract: Computational geometry is concerned with the design and analysis of algorithms for geometrical problems. In addition, other more practically oriented, areas of computer science— such as computer graphics, computer-aided design, robotics, pattern recognition, and operations research—give rise to problems that inherently are geometrical. This is one reason computational geometry has attracted enormous research interest in the past decade and is a well-established area today. (For standard sources, we refer to the survey article by Lee and Preparata [19841 and to the textbooks by Preparata and Shames [1985] and Edelsbrunner [1987bl.) Readers familiar with the literature of computational geometry will have noticed, especially in the last few years, an increasing interest in a geometrical construct called the Voronoi diagram. This trend can also be observed in combinatorial geometry and in a considerable number of articles in natural science journals that address the Voronoi diagram under different names specific to the respective area. Given some number of points in the plane, their Voronoi diagram divides the plane according to the nearest-neighbor

4,236 citations