scispace - formally typeset
Search or ask a question
Author

Emre Ozfatura

Other affiliations: Sabancı University
Bio: Emre Ozfatura is an academic researcher from Imperial College London. The author has contributed to research in topics: Computer science & Gradient descent. The author has an hindex of 11, co-authored 40 publications receiving 454 citations. Previous affiliations of Emre Ozfatura include Sabancı University.

Papers
More filters
Proceedings ArticleDOI
04 May 2020
TL;DR: Small cell base stations are introduced orchestrating FEEL among MUs within their cells, and periodically exchanging model updates with the MBS for global consensus, and it is shown that this hierarchical federated learning (HFL) scheme significantly reduces the communication latency without sacrificing the accuracy.
Abstract: We consider federated edge learning (FEEL), where mobile users (MUs) collaboratively learn a global model by sharing local updates on the model parameters rather than their datasets, with the help of a mobile base station (MBS). We optimize the resource allocation among MUs to reduce the communication latency in learning iterations. Observing that the performance in this centralized setting is limited due to the distance of the cell-edge users to the MBS, we introduce small cell base stations (SBSs) orchestrating FEEL among MUs within their cells, and periodically exchanging model updates with the MBS for global consensus. We show that this hierarchical federated learning (HFL) scheme significantly reduces the communication latency without sacrificing the accuracy.

271 citations

Proceedings ArticleDOI
07 Jul 2019
TL;DR: In this paper, the authors proposed a coded distributed gradient descent (DGD) technique which can trade-off the average computation time with the communication load, and showed that the average completion time per iteration can be reduced significantly at a reasonable increase in communication load.
Abstract: When gradient descent (GD) is scaled to many parallel computing servers (workers) for large scale machine learning problems, its per-iteration computation time is limited by the straggling workers. Coded distributed GD (DGD) can tolerate straggling workers by assigning redundant computations to the workers, but in most existing schemes, each non-straggling worker transmits one message per iteration to the parameter server (master) after completing all its computations. We allow multiple computations to be conveyed from each worker per iteration in order to exploit computations executed also by the straggling worker. We show that the average completion time per iteration can be reduced significantly at a reasonable increase in the communication load. We also propose a general coded DGD technique which can trade-off the average computation time with the communication load.

81 citations

Journal ArticleDOI
TL;DR: In this article, the authors exploited coded caching to minimize the amount of data downloaded from the MBS, taking into account the mobility of the users as well as the popularity of the contents.
Abstract: In heterogeneous cellular networks with caching capability, due to mobility of users and storage constraints of small-cell base stations (SBSs), users may not be able to download all of their requested content from the SBSs within the delay deadline of the content. In that case, the users are directed to the macro-cell base station (MBS) in order to satisfy the service quality requirement. Coded caching is exploited here to minimize the amount of data downloaded from the MBS, taking into account the mobility of the users as well as the popularity of the contents. An optimal distributed caching policy is presented when the delay deadline is below a certain threshold, and a distributed greedy caching policy is proposed when the delay deadline is relaxed.

49 citations

Proceedings ArticleDOI
12 May 2019
TL;DR: In this paper, a hybrid approach, called coded partial gradient computation (CPGC), is proposed to reduce both the computation time and decoding complexity of coded and uncoded computation.
Abstract: Coded computation techniques provide robustness against straggling servers in distributed computing, with the following limitations: First, they increase decoding complexity. Second, they ignore computations carried out by straggling servers; and they are typically designed to recover the full gradient, and thus, cannot provide a balance between the accuracy of the gradient and per-iteration completion time. Here we introduce a hybrid approach, called coded partial gradient computation (CPGC), that benefits from the advantages of both coded and uncoded computation schemes, and reduces both the computation time and decoding complexity.

42 citations

Journal ArticleDOI
TL;DR: In this article, the authors argue for a joint communication and learning paradigm for both the training and inference stages of edge learning, which can enable reliable and efficient communications in the presence of channel imperfections.
Abstract: Bringing the success of modern machine learning (ML) techniques to mobile devices can enable many new services and businesses, but also poses significant technical and research challenges. Two factors that are critical for the success of ML algorithms are massive amounts of data and processing power, both of which are plentiful, but highly distributed at the network edge. Moreover, edge devices are connected through bandwidth- and power-limited wireless links that suffer from noise, time variations, and interference. Information and coding theory have laid the foundations of reliable and efficient communications in the presence of channel imperfections, whose application in modern wireless networks has been a tremendous success. However, there is a clear disconnect between the current coding and communication schemes, and the ML algorithms deployed at the network edge. In this article, we challenge the current approach that treats these problems separately, and argue for a joint communication and learning paradigm for both the training and inference stages of edge learning.

41 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: By consolidating information scattered across the communication, networking, and DL areas, this survey can help readers to understand the connections between enabling technologies while promoting further discussions on the fusion of edge intelligence and intelligent edge, i.e., Edge DL.
Abstract: Ubiquitous sensors and smart devices from factories and communities are generating massive amounts of data, and ever-increasing computing power is driving the core of computation and services from the cloud to the edge of the network. As an important enabler broadly changing people’s lives, from face recognition to ambitious smart factories and cities, developments of artificial intelligence (especially deep learning, DL) based applications and services are thriving. However, due to efficiency and latency issues, the current cloud computing service architecture hinders the vision of “providing artificial intelligence for every person and every organization at everywhere”. Thus, unleashing DL services using resources at the network edge near the data sources has emerged as a desirable solution. Therefore, edge intelligence , aiming to facilitate the deployment of DL services by edge computing, has received significant attention. In addition, DL, as the representative technique of artificial intelligence, can be integrated into edge computing frameworks to build intelligent edge for dynamic, adaptive edge maintenance and management. With regard to mutually beneficial edge intelligence and intelligent edge , this paper introduces and discusses: 1) the application scenarios of both; 2) the practical implementation methods and enabling technologies, namely DL training and inference in the customized edge computing framework; 3) challenges and future trends of more pervasive and fine-grained intelligence. We believe that by consolidating information scattered across the communication, networking, and DL areas, this survey can help readers to understand the connections between enabling technologies while promoting further discussions on the fusion of edge intelligence and intelligent edge , i.e., Edge DL.

611 citations

Journal ArticleDOI
TL;DR: In this paper, a survey on the relationship between edge intelligence and intelligent edge computing is presented, and the practical implementation methods and enabling technologies, namely DL training and inference in the customized edge computing framework, challenges and future trends of more pervasive and fine-grained intelligence.
Abstract: Ubiquitous sensors and smart devices from factories and communities are generating massive amounts of data, and ever-increasing computing power is driving the core of computation and services from the cloud to the edge of the network. As an important enabler broadly changing people's lives, from face recognition to ambitious smart factories and cities, developments of artificial intelligence (especially deep learning, DL) based applications and services are thriving. However, due to efficiency and latency issues, the current cloud computing service architecture hinders the vision of "providing artificial intelligence for every person and every organization at everywhere". Thus, unleashing DL services using resources at the network edge near the data sources has emerged as a desirable solution. Therefore, edge intelligence, aiming to facilitate the deployment of DL services by edge computing, has received significant attention. In addition, DL, as the representative technique of artificial intelligence, can be integrated into edge computing frameworks to build intelligent edge for dynamic, adaptive edge maintenance and management. With regard to mutually beneficial edge intelligence and intelligent edge, this paper introduces and discusses: 1) the application scenarios of both; 2) the practical implementation methods and enabling technologies, namely DL training and inference in the customized edge computing framework; 3) challenges and future trends of more pervasive and fine-grained intelligence. We believe that by consolidating information scattered across the communication, networking, and DL areas, this survey can help readers to understand the connections between enabling technologies while promoting further discussions on the fusion of edge intelligence and intelligent edge, i.e., Edge DL.

518 citations

Journal ArticleDOI
TL;DR: This work introduces a novel analog scheme, called A-DSGD, which exploits the additive nature of the wireless MAC for over-the-air gradient computation, and provides convergence analysis for this approach.
Abstract: We study federated machine learning (ML) at the wireless edge, where power- and bandwidth-limited wireless devices with local datasets carry out distributed stochastic gradient descent (DSGD) with the help of a parameter server (PS). Standard approaches assume separate computation and communication, where local gradient estimates are compressed and transmitted to the PS over orthogonal links. Following this digital approach, we introduce D-DSGD, in which the wireless devices employ gradient quantization and error accumulation, and transmit their gradient estimates to the PS over a multiple access channel (MAC). We then introduce a novel analog scheme, called A-DSGD, which exploits the additive nature of the wireless MAC for over-the-air gradient computation, and provide convergence analysis for this approach. In A-DSGD, the devices first sparsify their gradient estimates, and then project them to a lower dimensional space imposed by the available channel bandwidth. These projections are sent directly over the MAC without employing any digital code. Numerical results show that A-DSGD converges faster than D-DSGD thanks to its more efficient use of the limited bandwidth and the natural alignment of the gradient estimates over the channel. The improvement is particularly compelling at low power and low bandwidth regimes. We also illustrate for a classification problem that, A-DSGD is more robust to bias in data distribution across devices, while D-DSGD significantly outperforms other digital schemes in the literature. We also observe that both D-DSGD and A-DSGD perform better with the number of devices, showing their ability in harnessing the computation power of edge devices.

494 citations

Journal ArticleDOI
TL;DR: An iterative algorithm is proposed where, at every step, closed-form solutions for time allocation, bandwidth allocation, power control, computation frequency, and learning accuracy are derived and can reduce up to 59.5% energy consumption compared to the conventional FL method.
Abstract: In this paper, the problem of energy efficient transmission and computation resource allocation for federated learning (FL) over wireless communication networks is investigated. In the considered model, each user exploits limited local computational resources to train a local FL model with its collected data and, then, sends the trained FL model to a base station (BS) which aggregates the local FL model and broadcasts it back to all of the users. Since FL involves an exchange of a learning model between users and the BS, both computation and communication latencies are determined by the learning accuracy level. Meanwhile, due to the limited energy budget of the wireless users, both local computation energy and transmission energy must be considered during the FL process. This joint learning and communication problem is formulated as an optimization problem whose goal is to minimize the total energy consumption of the system under a latency constraint. To solve this problem, an iterative algorithm is proposed where, at every step, closed-form solutions for time allocation, bandwidth allocation, power control, computation frequency, and learning accuracy are derived. Since the iterative algorithm requires an initial feasible solution, we construct the completion time minimization problem and a bisection-based algorithm is proposed to obtain the optimal solution, which is a feasible solution to the original energy minimization problem. Numerical results show that the proposed algorithms can reduce up to 59.5% energy consumption compared to the conventional FL method.

365 citations

Posted Content
TL;DR: FedML is introduced, an open research library and benchmark that facilitates the development of new federated learning algorithms and fair performance comparisons and can provide an efficient and reproducible means of developing and evaluating algorithms for the Federated learning research community.
Abstract: Federated learning (FL) is a rapidly growing research field in machine learning. However, existing FL libraries cannot adequately support diverse algorithmic development; inconsistent dataset and model usage make fair algorithm comparison challenging. In this work, we introduce FedML, an open research library and benchmark to facilitate FL algorithm development and fair performance comparison. FedML supports three computing paradigms: on-device training for edge devices, distributed computing, and single-machine simulation. FedML also promotes diverse algorithmic research with flexible and generic API design and comprehensive reference baseline implementations (optimizer, models, and datasets). We hope FedML could provide an efficient and reproducible means for developing and evaluating FL algorithms that would benefit the FL research community. We maintain the source code, documents, and user community at this https URL.

275 citations