scispace - formally typeset
Search or ask a question
Author

Emre Telatar

Bio: Emre Telatar is an academic researcher from École Polytechnique Fédérale de Lausanne. The author has contributed to research in topics: Decoding methods & Binary erasure channel. The author has an hindex of 27, co-authored 93 publications receiving 15988 citations. Previous affiliations of Emre Telatar include École Normale Supérieure & Princeton University.


Papers
More filters
Journal ArticleDOI
Emre Telatar1
01 Nov 1999
TL;DR: In this paper, the authors investigate the use of multiple transmitting and/or receiving antennas for single user communications over the additive Gaussian channel with and without fading, and derive formulas for the capacities and error exponents of such channels, and describe computational procedures to evaluate such formulas.
Abstract: We investigate the use of multiple transmitting and/or receiving antennas for single user communications over the additive Gaussian channel with and without fading. We derive formulas for the capacities and error exponents of such channels, and describe computational procedures to evaluate such formulas. We show that the potential gains of such multi-antenna systems over single-antenna systems is rather large under independenceassumptions for the fades and noises at different receiving antennas.

12,542 citations

Proceedings ArticleDOI
28 Jun 2009
TL;DR: It is shown that, for any binary-input discrete memoryless channel W with symmetric capacity I(W) and any rate R ≪I(W), the polar-coding block-error probability under successive cancellation decoding satisfies Pe(N, R) ≤ 2−Nβ for any β ≪ 1/2 when the block-length N is large enough.
Abstract: A bound is given on the rate of channel polarization. As a corollary, an earlier bound on the probability of error for polar coding is improved. Specifically, it is shown that, for any binary-input discrete memoryless channel W with symmetric capacity I(W) and any rate R ≪ I(W), the polar-coding block-error probability under successive cancellation decoding satisfies P e (N, R) ≤ 2−Nβ for any β ≪ 1/2 when the block-length N is large enough.

486 citations

Posted Content
TL;DR: In this paper, it was shown that for any binary-input discrete memoryless channel with symmetric capacity, the probability of block decoding error for polar coding under successive cancellation decoding satisfies O(P_e \le 2 √ n 2 −N^\beta) for any ε > 0 when the block length is large enough.
Abstract: It is shown that for any binary-input discrete memoryless channel $W$ with symmetric capacity $I(W)$ and any rate $R

440 citations

Proceedings ArticleDOI
11 Dec 2009
TL;DR: In this article, it was shown that when the input alphabet size is a prime number, a similar construction to that for the binary case leads to polarization, and that all discrete memo-ryless channels can be polarized by randomized constructions.
Abstract: Channel polarization, originally proposed for binary-input channels, is generalized to arbitrary discrete mem-oryless channels. Specifically, it is shown that when the input alphabet size is a prime number, a similar construction to that for the binary case leads to polarization. This method can be extended to channels of composite input alphabet sizes by decomposing such channels into a set of channels with prime input alphabet sizes. It is also shown that all discrete memo-ryless channels can be polarized by randomized constructions. The introduction of randomness does not change the order of complexity of polar code construction, encoding, and decoding. A previous result on the error probability behavior of polar codes is also extended to the case of arbitrary discrete memoryless channels. The generalization of polarization to channels with arbitrary finite input alphabet sizes leads to polar-coding methods for approaching the true (as opposed to symmetric) channel capacity of arbitrary channels with discrete or continuous input alphabets.

372 citations

Proceedings ArticleDOI
24 Jun 2007
TL;DR: A new outer bound to the capacity region of a certain class of interference channels is proved, and the gap between it and the Han-Kobayashi inner bound is quantified.
Abstract: We prove a new outer bound to the capacity region of a certain class of interference channels, and quantify the gap between it and the Han-Kobayashi inner bound. The new bound allows the recovery of the El Gamal-Costa characterization of the capacity region of certain deterministic interference channels, and also the recent characterization by Etkin, Tse and Wang of the capacity region of scalar Gaussian interference channels to within '1 bit'. Moreover, the new bound allows a straightforward generalization of the '1 bit' result to vector Gaussian interference channels.

179 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Using distributed antennas, this work develops and analyzes low-complexity cooperative diversity protocols that combat fading induced by multipath propagation in wireless networks and develops performance characterizations in terms of outage events and associated outage probabilities, which measure robustness of the transmissions to fading.
Abstract: We develop and analyze low-complexity cooperative diversity protocols that combat fading induced by multipath propagation in wireless networks. The underlying techniques exploit space diversity available through cooperating terminals' relaying signals for one another. We outline several strategies employed by the cooperating radios, including fixed relaying schemes such as amplify-and-forward and decode-and-forward, selection relaying schemes that adapt based upon channel measurements between the cooperating terminals, and incremental relaying schemes that adapt based upon limited feedback from the destination terminal. We develop performance characterizations in terms of outage events and associated outage probabilities, which measure robustness of the transmissions to fading, focusing on the high signal-to-noise ratio (SNR) regime. Except for fixed decode-and-forward, all of our cooperative diversity protocols are efficient in the sense that they achieve full diversity (i.e., second-order diversity in the case of two terminals), and, moreover, are close to optimum (within 1.5 dB) in certain regimes. Thus, using distributed antennas, we can provide the powerful benefits of space diversity without need for physical arrays, though at a loss of spectral efficiency due to half-duplex operation and possibly at the cost of additional receive hardware. Applicable to any wireless setting, including cellular or ad hoc networks-wherever space constraints preclude the use of physical arrays-the performance characterizations reveal that large power or energy savings result from the use of these protocols.

12,761 citations

Journal ArticleDOI
Emre Telatar1
01 Nov 1999
TL;DR: In this paper, the authors investigate the use of multiple transmitting and/or receiving antennas for single user communications over the additive Gaussian channel with and without fading, and derive formulas for the capacities and error exponents of such channels, and describe computational procedures to evaluate such formulas.
Abstract: We investigate the use of multiple transmitting and/or receiving antennas for single user communications over the additive Gaussian channel with and without fading. We derive formulas for the capacities and error exponents of such channels, and describe computational procedures to evaluate such formulas. We show that the potential gains of such multi-antenna systems over single-antenna systems is rather large under independenceassumptions for the fades and noises at different receiving antennas.

12,542 citations

Book
01 Jan 2005

9,038 citations

Journal ArticleDOI
TL;DR: A generalization of orthogonal designs is shown to provide space-time block codes for both real and complex constellations for any number of transmit antennas and it is shown that many of the codes presented here are optimal in this sense.
Abstract: We introduce space-time block coding, a new paradigm for communication over Rayleigh fading channels using multiple transmit antennas. Data is encoded using a space-time block code and the encoded data is split into n streams which are simultaneously transmitted using n transmit antennas. The received signal at each receive antenna is a linear superposition of the n transmitted signals perturbed by noise. Maximum-likelihood decoding is achieved in a simple way through decoupling of the signals transmitted from different antennas rather than joint detection. This uses the orthogonal structure of the space-time block code and gives a maximum-likelihood decoding algorithm which is based only on linear processing at the receiver. Space-time block codes are designed to achieve the maximum diversity order for a given number of transmit and receive antennas subject to the constraint of having a simple decoding algorithm. The classical mathematical framework of orthogonal designs is applied to construct space-time block codes. It is shown that space-time block codes constructed in this way only exist for few sporadic values of n. Subsequently, a generalization of orthogonal designs is shown to provide space-time block codes for both real and complex constellations for any number of transmit antennas. These codes achieve the maximum possible transmission rate for any number of transmit antennas using any arbitrary real constellation such as PAM. For an arbitrary complex constellation such as PSK and QAM, space-time block codes are designed that achieve 1/2 of the maximum possible transmission rate for any number of transmit antennas. For the specific cases of two, three, and four transmit antennas, space-time block codes are designed that achieve, respectively, all, 3/4, and 3/4 of maximum possible transmission rate using arbitrary complex constellations. The best tradeoff between the decoding delay and the number of transmit antennas is also computed and it is shown that many of the codes presented here are optimal in this sense as well.

7,348 citations

Journal ArticleDOI
TL;DR: This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.
Abstract: What will 5G be? What it will not be is an incremental advance on 4G. The previous four generations of cellular technology have each been a major paradigm shift that has broken backward compatibility. Indeed, 5G will need to be a paradigm shift that includes very high carrier frequencies with massive bandwidths, extreme base station and device densities, and unprecedented numbers of antennas. However, unlike the previous four generations, it will also be highly integrative: tying any new 5G air interface and spectrum together with LTE and WiFi to provide universal high-rate coverage and a seamless user experience. To support this, the core network will also have to reach unprecedented levels of flexibility and intelligence, spectrum regulation will need to be rethought and improved, and energy and cost efficiencies will become even more critical considerations. This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.

7,139 citations