scispace - formally typeset
Search or ask a question
Author

En-Tang Kang

Bio: En-Tang Kang is an academic researcher from National University of Singapore. The author has contributed to research in topics: Polymerization & Polyaniline. The author has an hindex of 97, co-authored 763 publications receiving 38498 citations. Previous affiliations of En-Tang Kang include University at Buffalo & Beijing University of Chemical Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: The ability of aniline polymers to exist in a large number of intrinsic redox states makes them a unique and interesting class of polymeric materials as mentioned in this paper, and a number of fine reviews on the synthesis, physicochemical and electrochemical properties of the polymer have also appeared during this period.

1,407 citations

Journal ArticleDOI
TL;DR: This review provides a summary of the widely reported electrical switching phenomena in polymers and the corresponding polymer electronic memories.

902 citations

Journal ArticleDOI
TL;DR: An antimicrobial hydrogel based on dimethyldecylammonium chitosan (with high quaternization)-graft-poly(ethylene glycol) methacrylate (DMDC-Q-g-EM) and poly(ethylenes glycol), which has excellent antimicrobial efficacy against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Fusarium solani is reported.
Abstract: Despite advanced sterilization and aseptic techniques, infections associated with medical implants have not been eradicated. Most present coatings cannot simultaneously fulfil the requirements of antibacterial and antifungal activity as well as biocompatibility and reusability. Here, we report an antimicrobial hydrogel based on dimethyldecylammonium chitosan (with high quaternization)-graft-poly(ethylene glycol) methacrylate (DMDC-Q-g-EM) and poly(ethylene glycol) diacrylate, which has excellent antimicrobial efficacy against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Fusarium solani. The proposed mechanism of the antimicrobial activity of the polycationic hydrogel is by attraction of sections of anionic microbial membrane into the internal nanopores of the hydrogel, like an ‘anion sponge’, leading to microbial membrane disruption and then microbe death. We have also demonstrated a thin uniform adherent coating of the hydrogel by simple ultraviolet immobilization. An animal study shows that DMDC-Q-g-EM hydrogel coating is biocompatible with rabbit conjunctiva and has no toxicity to the epithelial cells or the underlying stroma.

699 citations

Journal ArticleDOI
TL;DR: A review of surface modification techniques for polymers with graft chains can be found in this paper, focusing on grafting methods as well as the structure and function of grafted surfaces.

622 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations

Journal ArticleDOI
TL;DR: Approaches, Derivatives and Applications Vasilios Georgakilas,† Michal Otyepka,‡ Athanasios B. Bourlinos,† Vimlesh Chandra, Namdong Kim, K. Kim,§,⊥ Radek Zboril,*,‡ and Kwang S. Kim.
Abstract: Approaches, Derivatives and Applications Vasilios Georgakilas,† Michal Otyepka,‡ Athanasios B. Bourlinos,‡ Vimlesh Chandra, Namdong Kim, K. Christian Kemp, Pavel Hobza,‡,§,⊥ Radek Zboril,*,‡ and Kwang S. Kim* †Institute of Materials Science, NCSR “Demokritos”, Ag. Paraskevi Attikis, 15310 Athens, Greece ‡Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology, San 31, Hyojadong, Namgu, Pohang 790-784, Korea Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo naḿ. 2, 166 10 Prague 6, Czech Republic

3,460 citations

Journal ArticleDOI
TL;DR: A critical review of the synthesis methods for graphene and its derivatives as well as their properties and the advantages of graphene-based composites in applications such as the Li-ion batteries, supercapacitors, fuel cells, photovoltaic devices, photocatalysis, and Raman enhancement are described.
Abstract: Graphene has attracted tremendous research interest in recent years, owing to its exceptional properties. The scaled-up and reliable production of graphene derivatives, such as graphene oxide (GO) and reduced graphene oxide (rGO), offers a wide range of possibilities to synthesize graphene-based functional materials for various applications. This critical review presents and discusses the current development of graphene-based composites. After introduction of the synthesis methods for graphene and its derivatives as well as their properties, we focus on the description of various methods to synthesize graphene-based composites, especially those with functional polymers and inorganic nanostructures. Particular emphasis is placed on strategies for the optimization of composite properties. Lastly, the advantages of graphene-based composites in applications such as the Li-ion batteries, supercapacitors, fuel cells, photovoltaic devices, photocatalysis, as well as Raman enhancement are described (279 references).

3,340 citations

Journal ArticleDOI
TL;DR: In this article, a review of polymer nanocomposites with single-wall or multi-wall carbon nanotubes is presented, and the current challenges to and opportunities for efficiently translating the extraordinary properties of carbon-nanotubes to polymer matrices are summarized.
Abstract: We review the present state of polymer nanocomposites research in which the fillers are single-wall or multiwall carbon nanotubes. By way of background we provide a brief synopsis about carbon nanotube materials and their suspensions. We summarize and critique various nanotube/polymer composite fabrication methods including solution mixing, melt mixing, and in situ polymerization with a particular emphasis on evaluating the dispersion state of the nanotubes. We discuss mechanical, electrical, rheological, thermal, and flammability properties separately and how these physical properties depend on the size, aspect ratio, loading, dispersion state, and alignment of nanotubes within polymer nanocomposites. Finally, we summarize the current challenges to and opportunities for efficiently translating the extraordinary properties of carbon nanotubes to polymer matrices in hopes of facilitating progress in this emerging area.

3,239 citations