scispace - formally typeset
Search or ask a question
Author

Enid K. Sichel

Bio: Enid K. Sichel is an academic researcher. The author has contributed to research in topics: Electrochemical cell & Electrode. The author has an hindex of 1, co-authored 1 publications receiving 1348 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a carbon nanotube sheet electrode with high power and long cycle life was used for a single cell device with 38 wt% H2SO4 as the electrolyte.
Abstract: Carbon nanotube sheet electrodes have been prepared from catalytically grown carbon nanotubes of high purity and narrow diameter distribution, centered around 80 A. Our study shows that the electrodes are free-standing mats of entangled nanotubes with an open porous structure almost impossible to obtain with activated carbon or carbon fiber. These properties are highly desirable for high power and long cycle life electrochemical capacitors. Specific capacitances of 102 and 49 F/g were measured at 1 and 100 Hz, respectively, on a single cell device with 38 wt % H2SO4 as the electrolyte. The same cell had a power density of >8000 W/kg.

1,410 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Abstract: Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

14,213 citations

Journal ArticleDOI
02 Aug 2002-Science
TL;DR: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Abstract: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects. Some of these applications are now realized in products. Others are demonstrated in early to advanced devices, and one, hydrogen storage, is clouded by controversy. Nanotube cost, polydispersity in nanotube type, and limitations in processing and assembly methods are important barriers for some applications of single-walled nanotubes.

9,693 citations

Journal ArticleDOI
TL;DR: This review describes some recent developments in the discovery of nanoelectrolytes and nanoeLECTrodes for lithium batteries, fuel cells and supercapacitors and the advantages and disadvantages of the nanoscale in materials design for such devices.
Abstract: New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. This review describes some recent developments in the discovery of nanoelectrolytes and nanoelectrodes for lithium batteries, fuel cells and supercapacitors. The advantages and disadvantages of the nanoscale in materials design for such devices are highlighted.

8,157 citations

Journal ArticleDOI
TL;DR: This tutorial review provides a brief summary of recent research progress on carbon-based electrode materials forsupercapacitors, as well as the importance of electrolytes in the development of supercapacitor technology.
Abstract: This tutorial review provides a brief summary of recent research progress on carbon-based electrode materials for supercapacitors, as well as the importance of electrolytes in the development of supercapacitor technology. The basic principles of supercapacitors, the characteristics and performances of various nanostructured carbon-based electrode materials are discussed. Aqueous and non-aqueous electrolyte solutions used in supercapacitors are compared. The trend on future development of high-power and high-energy supercapacitors is analyzed.

6,057 citations

Journal ArticleDOI
TL;DR: This Review introduces several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage, and the current status of high-performance hydrogen storage materials for on-board applications and electrochemicals for lithium-ion batteries and supercapacitors.
Abstract: [Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China.;Cheng, HM (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Peoples R China;cheng@imr.ac.cn

4,105 citations