scispace - formally typeset
Search or ask a question
Author

Enrico Bellotti

Bio: Enrico Bellotti is an academic researcher from Boston University. The author has contributed to research in topics: Monte Carlo method & Impact ionization. The author has an hindex of 33, co-authored 212 publications receiving 4350 citations. Previous affiliations of Enrico Bellotti include Georgia Institute of Technology & Georgia Tech Research Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: The UWBG semiconductor materials, such as high Al‐content AlGaN, diamond and Ga2O3, advanced in maturity to the point where realizing some of their tantalizing advantages is a relatively near‐term possibility.
Abstract: J. Y. Tsao,* S. Chowdhury, M. A. Hollis,* D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar,* S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons

785 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive study of the transport dynamics of electrons in the ternary compounds, Al/sub x/Ga/sub 1-x/N and In/sub ng/g/ng/s/n g/n/g n/g 1.x/n, is presented, which includes all of the major scattering mechanisms.
Abstract: We present a comprehensive study of the transport dynamics of electrons in the ternary compounds, Al/sub x/Ga/sub 1-x/N and In/sub x/Ga/sub 1-x/N. Calculations are made using a nonparabolic effective mass energy band model. Monte Carlo simulation that includes all of the major scattering mechanisms. The band parameters used in the simulation are extracted from optimized pseudopotential band calculations to ensure excellent agreement with experimental information and ab initio band models. The effects of alloy scattering on the electron transport physics are examined. The steady state velocity field curves and low field mobilities are calculated for representative compositions of these alloys at different temperatures and ionized impurity concentrations. A field dependent mobility model is provided for both ternary compounds AlGaN and InGaN. The parameters for the low and high field mobility models for these ternary compounds are extracted and presented. The mobility models can be employed in simulations of devices that incorporate the ternary III-nitrides.

421 citations

Journal ArticleDOI
TL;DR: In this paper, the first calculations of hole initiated interband impact ionization in bulk zincblende and wurtzite phase GaN are presented using an ensemble Monte Carlo simulation including full details of all of the relevant valence bands, derived from an empirical pseudopotential approach, for each crystal type.
Abstract: In this article, the first calculations of hole initiated interband impact ionization in bulk zincblende and wurtzite phase GaN are presented. The calculations are made using an ensemble Monte Carlo simulation including the full details of all of the relevant valence bands, derived from an empirical pseudopotential approach, for each crystal type. The model also includes numerically generated hole initiated impact ionization transition rates, calculated based on the pseudopotential band structure. The calculations predict that both the average hole energies and ionization coefficients are substantially higher in the zincblende phase than in the wurtzite phase. This difference is attributed to the higher valence band effective masses and equivalently higher effective density of states found in the wurtzite polytype. Furthermore, the hole ionization coefficient is found to be comparable to the previously calculated electron ionization coefficient in zincblende GaN at an applied electric field strength of 3 MV/cm. In the wurtzite phase, the electron and hole impact ionization coefficients are predicted to be similar at high electric fields, but at lower fields, the hole ionization rate appears to be greater.

197 citations

Journal ArticleDOI
TL;DR: In this paper, various cation substitutional dopants in Ga2O3 were investigated for the possibility of p-type conductivity using density functional theory and hybrid functional calculations.
Abstract: We investigate the various cation substitutional dopants in Ga2O3 for the possibility of p–type conductivity using density functional theory. Our calculations include both standard density functional theory and hybrid functional calculations. We demonstrate that all the investigated dopants result in deep acceptor levels, not able to contribute to the p–type conductivity of Ga2O3. In light of these results, we compare our findings with other wide bandgap oxides and reexamine previous experiments on zinc doping in Ga2O3.

190 citations

Journal ArticleDOI
TL;DR: In this paper, the first five conduction bands derived from the pseudopotential method and a numerically calculated impact ionization transition rate using a wave-vector-dependent dielectric function were studied using an ensemble Monte Carlo method.
Abstract: Electronic transport in wurtzite phase InN is studied using an ensemble Monte Carlo method. The model includes the full details of the first five conduction bands derived from the pseudopotential method and a numerically calculated impact ionization transition rate using a wave-vector- dependent dielectric function. Calculated results for electron transport at both low and high electric field are presented and compared with available results from simpler methods. The dependence of the relevant transport properties on the parameters is discussed, in particular in regards to the uncertainties in the band structure and coupling constants. It is found that at a field of 65 kV/cm that the peak electron drift velocity is 4.2×107 cm/s. The peak velocity in InN is substantially higher than in GaN. The velocity field curve presents a noticeable anisotropy with respect to field direction. The peak velocity decreases to 3.4×107 cm/s for a field of 70 kV/cm in the direction perpendicular to the basal plane. The elect...

167 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI

6,278 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive and up-to-date compilation of band parameters for all of the nitrogen-containing III-V semiconductors that have been investigated to date is presented.
Abstract: We present a comprehensive and up-to-date compilation of band parameters for all of the nitrogen-containing III–V semiconductors that have been investigated to date. The two main classes are: (1) “conventional” nitrides (wurtzite and zinc-blende GaN, InN, and AlN, along with their alloys) and (2) “dilute” nitrides (zinc-blende ternaries and quaternaries in which a relatively small fraction of N is added to a host III–V material, e.g., GaAsN and GaInAsN). As in our more general review of III–V semiconductor band parameters [I. Vurgaftman et al., J. Appl. Phys. 89, 5815 (2001)], complete and consistent parameter sets are recommended on the basis of a thorough and critical review of the existing literature. We tabulate the direct and indirect energy gaps, spin-orbit and crystal-field splittings, alloy bowing parameters, electron and hole effective masses, deformation potentials, elastic constants, piezoelectric and spontaneous polarization coefficients, as well as heterostructure band offsets. Temperature an...

2,525 citations

Journal ArticleDOI
TL;DR: In this article, high-order harmonic generation is observed in a bulk crystalline solid with important implications for attosecond science, where the host medium for this interaction is typically a gas.
Abstract: High-order harmonic generation is a nonlinear optical process that enables the creation of light pulses at frequencies much higher than that from a seed laser. The host medium for this interaction is typically a gas. Now, the process has been observed in a bulk crystalline solid with important implications for attosecond science.

1,264 citations