scispace - formally typeset
Search or ask a question
Author

Enrico Clementi

Bio: Enrico Clementi is an academic researcher from IBM. The author has contributed to research in topics: Ab initio & Hartree–Fock method. The author has an hindex of 65, co-authored 264 publications receiving 15974 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the potential energies for the water dimer in various geometrical configurations have been calculated with a configuration-interaction method and the correlation effects for the entire potential surface have been analyzed in terms of inter− and intramolecular effects; the substantial coupling found between these effects, particularly in the vicinity of equilibrium position, is discussed.
Abstract: The potential energies for the water dimer in various geometrical configurations have been calculated with a configuration–interaction method. The computed dimerization binding energies corresponding to the potential minima for the linear, cyclic, and bifurcated configurations are −5.6, −4.9, and −4.2 kcal/mol, respectively; the correlation effects account for −1.1, −1.2, and −0.9 kcal/mol, respectively, of the total binding energy for these three dimeric forms. The correlation effects for the entire potential surface have been analyzed in terms of inter‐ and intramolecular effects; the substantial coupling found between these effects, particularly in the vicinity of equilibrium position, is discussed. The computational technique employed, in particular an analysis on the selection criteria for the configuration state functions, is discussed, and its reliability is assessed. Two analytical expressions for the water dimer potential surface obtained by fitting the calculated energies are presented. The potential surface given here is being used to determine the structure of liquid water (in the pairwise approximation and with Monte Carlo techniques); this latter work will be reported elsewhere.

1,089 citations

Book
Enrico Clementi1, Carla Roetti1
01 Jan 1974

746 citations

Journal ArticleDOI
Enrico Clementi1

490 citations

Journal ArticleDOI
TL;DR: In this article, the static dipole polarizability and second hyperpolarizability tensors are calculated for polyene systems via ab initio coupled-perturbed Hartree-Fock theory.
Abstract: The static dipole polarizability and second hyperpolarizability tensors are calculated for polyene systems via ab initio coupled‐perturbed Hartree–Fock theory. The effect of basis set augmentation on the calculated properties is explored for C4H6 and example basis sets are used to calculate the polarizability and second hyperpolarizability for the longer polyenes: C6H8, C8H10, C10H12, C12H14, C14H16,C16H18, C18H20, C20H22, C22H24. Results for the finite polyenes are extrapolated to predict the unit‐cell polarizability and second hyperpolarizability of infinite polyacetylene. The working equations which take advantage of the 2n+1 theorem of perturbation theory for calculating up to the second hyperpolarizability are given, and their implementation is briefly discussed. In particular it is shown that the implementation is readily amenable to parallel processing.

440 citations

Journal ArticleDOI
TL;DR: In this paper, a semi-empirical functional of the Hartree-Fock density is presented for estimates of the correlation energy correction, which is similar to the one proposed by Gombas and is parametrized with reference to few atomic systems.
Abstract: A semiempirical functional of the Hartree‐Fock density is presented for estimates of the correlation energy correction. The functional is similar to the one proposed by Gombas and is (a) parametrized with reference to few atomic systems, and (b) is modified as to reproduce the atomic correlation correction not only for closed but also for open shell systems. The functional is then applied to the ground state function of the hydrides LiH(1Σ+), BeH(2Σ+), BH(1Σ+), CH(2Π), NH(3Σ−), OH(2Π), and HF(1Σ+). Several internuclear distances have been considered for each hydride, scanning the potential energy curve from the repulsive region to the dissociation products (∼ 10 a.u.). For these points a simple multiconfigurational function (consisting of no more than three configurations) was computed to obtain Hartree‐Fock functions with proper dissociation behavior (H‐F‐P‐D functions). The semiempirical functional was applied both to the traditional H‐F functions and the H‐F‐P‐D functions in order to study how to selec...

378 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors compared the Bernal Fowler (BF), SPC, ST2, TIPS2, TIP3P, and TIP4P potential functions for liquid water in the NPT ensemble at 25°C and 1 atm.
Abstract: Classical Monte Carlo simulations have been carried out for liquid water in the NPT ensemble at 25 °C and 1 atm using six of the simpler intermolecular potential functions for the water dimer: Bernal–Fowler (BF), SPC, ST2, TIPS2, TIP3P, and TIP4P. Comparisons are made with experimental thermodynamic and structural data including the recent neutron diffraction results of Thiessen and Narten. The computed densities and potential energies are in reasonable accord with experiment except for the original BF model, which yields an 18% overestimate of the density and poor structural results. The TIPS2 and TIP4P potentials yield oxygen–oxygen partial structure functions in good agreement with the neutron diffraction results. The accord with the experimental OH and HH partial structure functions is poorer; however, the computed results for these functions are similar for all the potential functions. Consequently, the discrepancy may be due to the correction terms needed in processing the neutron data or to an effect uniformly neglected in the computations. Comparisons are also made for self‐diffusion coefficients obtained from molecular dynamics simulations. Overall, the SPC, ST2, TIPS2, and TIP4P models give reasonable structural and thermodynamic descriptions of liquid water and they should be useful in simulations of aqueous solutions. The simplicity of the SPC, TIPS2, and TIP4P functions is also attractive from a computational standpoint.

33,683 citations

Journal ArticleDOI
TL;DR: A description of the ab initio quantum chemistry package GAMESS, which can be treated with wave functions ranging from the simplest closed‐shell case up to a general MCSCF case, permitting calculations at the necessary level of sophistication.
Abstract: A description of the ab initio quantum chemistry package GAMESS is presented. Chemical systems containing atoms through radon can be treated with wave functions ranging from the simplest closed-shell case up to a general MCSCF case, permitting calculations at the necessary level of sophistication. Emphasis is given to novel features of the program. The parallelization strategy used in the RHF, ROHF, UHF, and GVB sections of the program is described, and detailed speecup results are given. Parallel calculations can be run on ordinary workstations as well as dedicated parallel machines. © John Wiley & Sons, Inc.

18,546 citations

Journal ArticleDOI
TL;DR: The CHARMM (Chemistry at Harvard Macromolecular Mechanics) as discussed by the authors is a computer program that uses empirical energy functions to model macromolescular systems, and it can read or model build structures, energy minimize them by first- or second-derivative techniques, perform a normal mode or molecular dynamics simulation, and analyze the structural, equilibrium, and dynamic properties determined in these calculations.
Abstract: CHARMM (Chemistry at HARvard Macromolecular Mechanics) is a highly flexible computer program which uses empirical energy functions to model macromolecular systems. The program can read or model build structures, energy minimize them by first- or second-derivative techniques, perform a normal mode or molecular dynamics simulation, and analyze the structural, equilibrium, and dynamic properties determined in these calculations. The operations that CHARMM can perform are described, and some implementation details are given. A set of parameters for the empirical energy function and a sample run are included.

14,725 citations

Journal ArticleDOI
TL;DR: In this article, a new coupling of Hartree-Fock theory with local density functional theory was proposed to improve the predictive power of the Hartree−Fock model for molecular bonding, and the results of tests on atomization energies, ionization potentials, and proton affinities were reported.
Abstract: Previous attempts to combine Hartree–Fock theory with local density‐functional theory have been unsuccessful in applications to molecular bonding. We derive a new coupling of these two theories that maintains their simplicity and computational efficiency, and yet greatly improves their predictive power. Very encouraging results of tests on atomization energies, ionization potentials, and proton affinities are reported, and the potential for future development is discussed.

13,853 citations

Journal ArticleDOI
TL;DR: In this paper, a split-valence extended gaussian basis set was used to obtain the LCAO-MO-SCF energies of closed shell species with two non-hydrogen atoms.
Abstract: Polarization functions are added in two steps to a split-valence extended gaussian basis set: d-type gaussians on the first row atoms C. N, O and F and p-type gaussians on hydrogen. The same d-exponent of 0.8 is found to be satisfactory for these four atoms and the hydrogen p-exponent of 1.1 is adequate in their hydrides. The energy lowering due to d functions is found to depend on the local symmetry around the heavy atom. For the particular basis used, the energy lowerings due to d functions for various environments around the heavy atom are tabulated. These bases are then applied to a set of molecules containing up to two heavy atoms to obtain their LCAO-MO-SCF energies. The mean absolute deviation between theory and experiment (where available) for heats of hydrogenation of closed shell species with two non-hydrogen atoms is 4 kcal/mole for the basis set with full polarization. Estimates of hydrogenation energy errors at the Hartree-Fock limit, based on available calculations, are given.

12,669 citations