scispace - formally typeset
Search or ask a question
Author

Enrico Maccioni

Bio: Enrico Maccioni is an academic researcher from University of Pisa. The author has contributed to research in topics: Gyroscope & Ring laser gyroscope. The author has an hindex of 17, co-authored 97 publications receiving 1487 citations. Previous affiliations of Enrico Maccioni include Istituto Nazionale di Fisica Nucleare.


Papers
More filters
Journal ArticleDOI
S. Adrián-Martínez1, M. Ageron2, Felix Aharonian3, Sebastiano Aiello  +243 moreInstitutions (24)
TL;DR: In this article, the main objectives of the KM3NeT Collaboration are (i) the discovery and subsequent observation of high-energy neutrino sources in the Universe and (ii) the determination of the mass hierarchy of neutrinos.
Abstract: The main objectives of the KM3NeT Collaboration are (i) the discovery and subsequent observation of high-energy neutrino sources in the Universe and (ii) the determination of the mass hierarchy of neutrinos. These objectives are strongly motivated by two recent important discoveries, namely: (1) the high-energy astrophysical neutrino signal reported by IceCube and (2) the sizable contribution of electron neutrinos to the third neutrino mass eigenstate as reported by Daya Bay, Reno and others. To meet these objectives, the KM3NeT Collaboration plans to build a new Research Infrastructure consisting of a network of deep-sea neutrino telescopes in the Mediterranean Sea. A phased and distributed implementation is pursued which maximises the access to regional funds, the availability of human resources and the synergistic opportunities for the Earth and sea sciences community. Three suitable deep-sea sites are selected, namely off-shore Toulon (France), Capo Passero (Sicily, Italy) and Pylos (Peloponnese, Greece). The infrastructure will consist of three so-called building blocks. A building block comprises 115 strings, each string comprises 18 optical modules and each optical module comprises 31 photo-multiplier tubes. Each building block thus constitutes a three-dimensional array of photo sensors that can be used to detect the Cherenkov light produced by relativistic particles emerging from neutrino interactions. Two building blocks will be sparsely configured to fully explore the IceCube signal with similar instrumented volume, different methodology, improved resolution and complementary field of view, including the galactic plane. One building block will be densely configured to precisely measure atmospheric neutrino oscillations.

729 citations

Journal ArticleDOI
TL;DR: In this paper, an under-ground experiment to detect the general relativistic effects due to the curvature of space-time around the Earth (de Sitter effect) and to rotation of the planet (dragging of the inertial frames or lens-thirring effect) was proposed.
Abstract: SUMMARY We propose an under-ground experiment to detect the general relativistic effects due to the curvature of space-time around the Earth (de Sitter effect) and to rotation of the planet (dragging of the inertial frames or Lense-Thirring effect). It is based on the comparison between the IERS value of the Earth rotation vector and corresponding measurements obtained by a tri-axial laser detector of rotation. The proposed detector consists of six large ring-lasers arranged along three orthogonal axes. In about two years of data taking, the 1% sensitivity required for the measurement of the Lense-Thirring drag can be reached with square rings of 6 $m$ side, assuming a shot noise limited sensitivity ($ 20 prad/s/\sqrt{Hz}$). The multi-gyros system, composed of rings whose planes are perpendicular to one or the other of three orthogonal axes, can be built in several ways. Here, we consider cubic and octahedron structures. The symmetries of the proposed configurations provide mathematical relations that can be used to study the stability of the scale factors, the relative orientations or the ring-laser planes, very important to get rid of systematics in long-term measurements, which are required in order to determine the relativistic effects.

140 citations

Journal ArticleDOI
TL;DR: In this article, visible light absorption and attenuation coefficients measured in deep seawater of a marine region located in the Southern Ionian Sea, 60-100 km SE of Capo Passero (Sicily).

74 citations

Journal ArticleDOI
TL;DR: The GINGER project as discussed by the authors is a ring-laser-based system for measuring de Sitter and Lense-Thirring effects in space-time, which uses a three-dimensional array of large-size ringlasers.

59 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a configuration of two ring laser arrays, one at maximum signal and the other at horizontal, to measure the Lense-Thirring (LT) and de Sitter effects.
Abstract: GINGER (Gyroscopes IN General Relativity) is a proposal for an Earth-based experiment to measure the Lense-Thirring (LT) and de Sitter effects. GINGER is based on ring lasers, which are the most sensitive inertial sensors to measure the rotation rate of the Earth. We show that two ring lasers, one at maximum signal and the other horizontal, would be the simplest configuration able to retrieve the GR effects. Here, we discuss this configuration in detail showing that it would have the capability to test LT effect at 1%, provided the accuracy of the scale factor of the instrument at the level of 1 part in 1012 is reached. In principle, one single ring laser could do the test, but the combination of the two ring lasers gives the necessary redundancy and the possibility to verify that the systematics of the lasers are sufficiently small. The discussion can be generalised to seismology and geodesy and it is possible to say that signals 10-12 orders of magnitude below the Earth rotation rate can be studied; the proposed array can be seen as the basic element of multi-axial systems, and the generalisation to three dimensions is feasible adding one or two devices and monitoring the relative angles between different ring lasers. This simple array can be used to measure with very high precision the amplitude of angular rotation rate (the length of the day, LOD), its short term variations, and the angle between the angular rotation vector and the horizontal ring laser. Finally this experiment could be useful to probe gravity at fundamental level giving indications on violations of Einstein Equivalence Principle and Lorenz Invariance and possible chiral effects in the gravitational field.

43 citations


Cited by
More filters
Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

20 Jul 1986

2,037 citations

Journal ArticleDOI
TL;DR: In this paper, a list of atomic data for the lighter elements from hydrogen to gallium is presented, with a focus on resonance lines, i.e., lines whose lower level is the ground state, or an excited fine-structure state of the ground term, and restricted to wavelengths longward of the H I Lyman limit at 911.753?.
Abstract: This compilation revises the 1991 listing of atomic data for the lighter elements from hydrogen to gallium. The tabulation emphasizes resonance lines, i.e., lines whose lower level is the ground state, or an excited fine-structure state of the ground term, and is restricted to wavelengths longward of the H I Lyman limit at 911.753 ?. All but the very weakest known and predicted electric-dipole transitions are included, but no forbidden lines. This paper has attempted to review all data published by the end of 2002.?????The tables contain the best data available to the author on ionization potentials, level designations, vacuum and air wavelengths, lower and upper energy levels, statistical weights, transition probabilities, natural damping constants (reciprocal lifetimes), oscillator strengths, and the often used combinations of log gf and log ?f. All ion stages with relevant classified lines are included. Individual components resulting from isotope shift and hyperfine structure are listed explicitly for certain species. The accompanying text provides references, explanations for the critical selection of data, and notes indicating where new measurements or calculations are needed.?????This compilation should be particularly useful in the analysis of interstellar and quasar absorption lines and other astrophysical sites where the density of particles and radiation is low enough to excite only the lowest atomic levels. The data also are relevant to the study of stellar atmospheres, and gaseous nebulae.?????An Appendix summarizes new data relevant to the similar compilation in Paper II for the elements germanium to uranium.

806 citations

Journal ArticleDOI
S. Adrián-Martínez1, M. Ageron2, Felix Aharonian3, Sebastiano Aiello  +243 moreInstitutions (24)
TL;DR: In this article, the main objectives of the KM3NeT Collaboration are (i) the discovery and subsequent observation of high-energy neutrino sources in the Universe and (ii) the determination of the mass hierarchy of neutrinos.
Abstract: The main objectives of the KM3NeT Collaboration are (i) the discovery and subsequent observation of high-energy neutrino sources in the Universe and (ii) the determination of the mass hierarchy of neutrinos. These objectives are strongly motivated by two recent important discoveries, namely: (1) the high-energy astrophysical neutrino signal reported by IceCube and (2) the sizable contribution of electron neutrinos to the third neutrino mass eigenstate as reported by Daya Bay, Reno and others. To meet these objectives, the KM3NeT Collaboration plans to build a new Research Infrastructure consisting of a network of deep-sea neutrino telescopes in the Mediterranean Sea. A phased and distributed implementation is pursued which maximises the access to regional funds, the availability of human resources and the synergistic opportunities for the Earth and sea sciences community. Three suitable deep-sea sites are selected, namely off-shore Toulon (France), Capo Passero (Sicily, Italy) and Pylos (Peloponnese, Greece). The infrastructure will consist of three so-called building blocks. A building block comprises 115 strings, each string comprises 18 optical modules and each optical module comprises 31 photo-multiplier tubes. Each building block thus constitutes a three-dimensional array of photo sensors that can be used to detect the Cherenkov light produced by relativistic particles emerging from neutrino interactions. Two building blocks will be sparsely configured to fully explore the IceCube signal with similar instrumented volume, different methodology, improved resolution and complementary field of view, including the galactic plane. One building block will be densely configured to precisely measure atmospheric neutrino oscillations.

729 citations

Journal ArticleDOI
TL;DR: A review of the history, current status, physical mechanisms, experimental methods, and applications of nonlinear magneto-optical effects in atomic vapors can be found in this paper.
Abstract: The authors review the history, current status, physical mechanisms, experimental methods, and applications of nonlinear magneto-optical effects in atomic vapors. They begin by describing the pioneering work of Macaluso and Corbino over a century ago on linear magneto-optical effects (in which the properties of the medium do not depend on the light power) in the vicinity of atomic resonances. These effects are then contrasted with various nonlinear magneto-optical phenomena that have been studied both theoretically and experimentally since the late 1960s. In recent years, the field of nonlinear magneto-optics has experienced a revival of interest that has led to a number of developments, including the observation of ultranarrow (1-Hz) magneto-optical resonances, applications in sensitive magnetometry, nonlinear magneto-optical tomography, and the possibility of a search for parity- and time-reversal-invariance violation in atoms.

704 citations