scispace - formally typeset
Search or ask a question
Author

Enrique Antonio-Lopez

Bio: Enrique Antonio-Lopez is an academic researcher from University of Central Florida. The author has contributed to research in topics: Optical fiber & Fiber optic sensor. The author has an hindex of 11, co-authored 41 publications receiving 494 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a hole-assisted few-mode multicore fiber in which each core supports both the LP01 mode and the two degenerate LP11 modes has been designed and fabricated for the first time.
Abstract: A seven-core few-mode multicore fiber in which each core supports both the LP01 mode and the two degenerate LP11 modes has been designed and fabricated for the first time, to the best of our knowledge. The hole-assisted structure enables low inter-core crosstalk and high mode density at the same time. LP01 inter-core crosstalk has been measured to be lower than -60 dB/km. LP11 inter-core crosstalk has been measured to be around -40 dB/km using a different setup. The LP11 free-space excitation-induced crosstalk is simulated and analyzed. This fiber allows multiplexed transmission of 21 spatial modes per polarization per wavelength. Data transmission in LP01/LP11 mode over 1 km of this fiber has been demonstrated with negligible penalty.

126 citations

Journal ArticleDOI
TL;DR: The authors' MCF bending sensor was found to be highly sensitive (4094 pm/deg) to small bending angles and it is capable of distinguishing multiple bending orientations.
Abstract: In this Letter, we demonstrate a compellingly simple directional bending sensor based on multicore optical fibers (MCF). The device operates in reflection mode and consists of a short segment of a three-core MCF that is fusion spliced at the distal end of a standard single mode optical fiber. The asymmetry of our MCF along with the high sensitivity of the supermodes of the MCF make the small bending on the MCF induce drastic changes in the supermodes, their excitation, and, consequently, on the reflected spectrum. Our MCF bending sensor was found to be highly sensitive (4094 pm/deg) to small bending angles. Moreover, it is capable of distinguishing multiple bending orientations.

113 citations

Journal ArticleDOI
TL;DR: Through simulation, this work has optimized the multicore fiber design for sharp spectral features and high overall transmission in the optical communications window and allowed determination of the thermo-optic coefficient of the MCF as a function of temperature.
Abstract: We demonstrate a novel high-temperature sensor using multicore fiber (MCF) spliced between two single-mode fibers. Launching light into such fiber chains creates a supermode interference pattern in the MCF that translates into a periodic modulation in the transmission spectrum. The spectrum shifts with changes in temperature and can be easily monitored in real time. This device is simple to fabricate and has been experimentally shown to operate at temperatures up to 1000°C in a very stable manner. Through simulation, we have optimized the multicore fiber design for sharp spectral features and high overall transmission in the optical communications window. Comparison between the experiment and the simulation has also allowed determination of the thermo-optic coefficient of the MCF as a function of temperature.

57 citations

Journal ArticleDOI
TL;DR: A compact and versatile interferometric vibration sensor that operates in reflection mode that can be easily tailored from a few hertz to several kilohertz through the cantilever dimensions.
Abstract: We demonstrate a compact and versatile interferometric vibration sensor that operates in reflection mode. To build the device, a short segment of symmetric strongly coupled multicore optical fiber (MCF) is fusion spliced to a single-mode optical fiber (SMF). One end of the MCF segment is cleaved and placed in a cantilever position. Due to the SMF-MCF configuration, only two supermodes are excited in the MCF. Vibrations induce cyclic bending of the MCF cantilever which results in periodic oscillations of the reflected interference spectrum. In our device, the MCF itself is the inertial mass. The frequency range where our device is sensitive can be easily tailored from a few hertz to several kilohertz through the cantilever dimensions.

52 citations

Journal ArticleDOI
TL;DR: The results suggest that the MCF strain sensors here proposed are likely to reach the readiness level to compete with other mature sensor technologies, hence to find commercial application.
Abstract: We report on the use of a multi-core fibre (MCF) comprising strongly-coupled cores for accurate strain sensing. Our MCF is designed to mode match a standard single mode optical fibre. This allows us to fabricate simple MCF interferometers whose interrogation is carried out with light sources, detectors and fibre components readily available from the optical communications tool box. Our MCF interferometers were used for sensing strain. The sensor calibration was carried out in a high-fidelity aerospace test laboratory. In addition, a packaged MCF interferometer was transferred into field trials to validate its performance under deployment conditions, specifically the sensors were installed in a historical iron bridge. Our results suggest that the MCF strain sensors here proposed are likely to reach the readiness level to compete with other mature sensor technologies, hence to find commercial application. An important advantage of our MCF interferometers is their capability to operate at very high temperatures.

48 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors summarized the simultaneous transmission of several independent spatial channels of light along optical fibres to expand the data-carrying capacity of optical communications, and showed that the results achieved in both multicore and multimode optical fibers are documented.
Abstract: This Review summarizes the simultaneous transmission of several independent spatial channels of light along optical fibres to expand the data-carrying capacity of optical communications. Recent results achieved in both multicore and multimode optical fibres are documented.

2,629 citations

Journal ArticleDOI
TL;DR: This paper focuses on SDM for fiber-optic communication using few-mode fibers or multimode fibers, in particular on the critical challenge of mode crosstalk, and presents the prospects for SDM in optical transmission and networking.
Abstract: Space-division multiplexing (SDM) uses multiplicity of space channels to increase capacity for optical communication. It is applicable for optical communication in both free space and guided waves. This paper focuses on SDM for fiber-optic communication using few-mode fibers or multimode fibers, in particular on the critical challenge of mode crosstalk. Multiple-input–multiple-output (MIMO) equalization methods developed for wireless communication can be applied as an electronic method to equalize mode crosstalk. Optical approaches, including differential modal group delay management, strong mode coupling, and multicore fibers, are necessary to bring the computational complexity for MIMO mode crosstalk equalization to practical levels. Progress in passive devices, such as (de)multiplexers, and active devices, such as amplifiers and switches, which are considered straightforward challenges in comparison with mode crosstalk, are reviewed. Finally, we present the prospects for SDM in optical transmission and networking.

621 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate the viability of spatial multiplexing to reach a data rate of 5.1 Tbit/s−1/carrier−1 on a single wavelength over a single fiber, by employing few-mode multicore fiber, compact three-dimensional waveguide multiplexers and energy-efficient frequency-domain MIMO equalization.
Abstract: Single-mode fibres with low loss and a large transmission bandwidth are a key enabler for long-haul high-speed optical communication and form the backbone of our information-driven society. However, we are on the verge of reaching the fundamental limit of single-mode fibre transmission capacity. Therefore, a new means to increase the transmission capacity of optical fibre is essential to avoid a capacity crunch. Here, by employing few-mode multicore fibre, compact three-dimensional waveguide multiplexers and energy-efficient frequency-domain multiple-input multiple-output equalization, we demonstrate the viability of spatial multiplexing to reach a data rate of 5.1 Tbit s−1 carrier−1 (net 4 Tbit s−1 carrier−1) on a single wavelength over a single fibre. Furthermore, by combining this approach with wavelength division multiplexing with 50 wavelength carriers on a dense 50 GHz grid, a gross transmission throughput of 255 Tbit s−1 (net 200 Tbit s−1) over a 1 km fibre link is achieved. A few-mode, multicore fibre allows ultra-high-speed data transmission on a single wavelength of light.

426 citations

Journal ArticleDOI
TL;DR: In this article, the authors propose a low-loss interface between single-mode and multimode systems, where the precise optical mapping between cores and individual modes is unimportant, by merging several singlemode cores into one multimode core.
Abstract: Photonic lanterns are made by adiabatically merging several single-mode cores into one multimode core. They provide low-loss interfaces between single-mode and multimode systems, where the precise optical mapping between cores and individual modes is unimportant.

302 citations

Journal ArticleDOI
TL;DR: This paper discusses crosstalk estimation in multicore fibers (MCFs) using coupled-mode theory and coupled-power theory, and the combination of MCF and few-mode fiber (FMF), which is FM-MCF, is a very promising approach to realize space multiplicity over 50.
Abstract: Multicore fibers (MCFs) are expected as a good candidate for overcoming the capacity limit of a current optical communication system. This paper describes the recent progress on the MCFs for space-division multiplexing to be utilized in future large capacity long-distance transmission systems. Tradeoff issue between low crosstalk and high core density in MCFs is presented and prospect of large-space multiplicity of MCFs is discussed.

273 citations