scispace - formally typeset
Search or ask a question
Author

Enrique Ruiz-Trejo

Bio: Enrique Ruiz-Trejo is an academic researcher from Imperial College London. The author has contributed to research in topics: Solid oxide fuel cell & Conductivity. The author has an hindex of 20, co-authored 61 publications receiving 1264 citations. Previous affiliations of Enrique Ruiz-Trejo include University of St Andrews & Max Planck Society.


Papers
More filters
Journal ArticleDOI
TL;DR: The theoretical basis behind carbon and sulfur poisoning is studied, before examining the strategies toward carbon and sulphur tolerance used so far in the SOFC literature, and the more extensive relevant heterogeneous catalysis literature is studied for strategies and materials which could be incorporated intocarbon and sulfur tolerant fuel cells.
Abstract: Solid oxide fuel cells (SOFCs) are a rapidly emerging energy technology for a low carbon world, providing high efficiency, potential to use carbonaceous fuels, and compatibility with carbon capture and storage. However, current state-of-the-art materials have low tolerance to sulfur, a common contaminant of many fuels, and are vulnerable to deactivation due to carbon deposition when using carbon-containing compounds. In this review, we first study the theoretical basis behind carbon and sulfur poisoning, before examining the strategies toward carbon and sulfur tolerance used so far in the SOFC literature. We then study the more extensive relevant heterogeneous catalysis literature for strategies and materials which could be incorporated into carbon and sulfur tolerant fuel cells.

220 citations

Journal ArticleDOI
TL;DR: Graphene is a 2D allotrope of carbon with exciting properties such as extremely high electronic conductivity and superior mechanical strength It has considerable potential for applications in fields such as bio-sensors, electrochemical energy storage and electronics.

113 citations

Journal ArticleDOI
TL;DR: In this article, the first data on a single crystal of Gadolinia doped Ceria (Ceria) was presented, which was prepared using inductive melting in a cold crucible.

106 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate the three-dimensional imaging of nano-particle infiltrated Ni-GDC (gadolinia-doped ceria) electrodes using focused ion beam tomography.

84 citations

Journal ArticleDOI
TL;DR: Proton conduction has been detected in the solid solution La 1− x Sr x YO 3− δ (LSYO) below 550°C using impedance spectroscopy.

49 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A detailed study of the structure of Perovskites and their properties in the context of a reducing Atmosphere andHydrogenation and Hydrogenolysis Reactions 2006 shows that the structure and properties of these minerals have changed little in the intervening years.
Abstract: II. Structure of Perovskites 1982 A. Crystal Structure 1982 B. Nonstoichiometry in Perovskites 1983 1. Oxygen Nonstoichiometry 1983 2. Cation Nonstoichiometry 1984 C. Physical Properties 1985 D. Adsorption Properties 1986 1. CO and NO Adsorption 1986 2. Oxygen Adsorption 1987 E. Specific Surface and Porosity 1987 F. Thermal Stability in a Reducing Atmosphere 1989 III. Acid−Base and Redox Properties 1990 A. Acidity and Basicity 1990 B. Redox Processes 1991 1. Kinetics and Mechanisms 1992 2. Reduction−Oxidation Cycles 1993 C. Ion Mobility 1993 1. Oxygen Transport 1993 2. Cation Transport 1994 IV. Heterogeneous Catalysis 1995 A. Oxidation Reactions 1995 1. CO Oxidation 1995 2. Oxidation of Hydrocarbons 1996 B. Pollution Abatement 2001 1. NOx Decomposition 2001 2. Exhaust Treatment 2002 3. Stability 2004 C. Hydrogenation and Hydrogenolysis Reactions 2004 1. Hydrogenation of Carbon Oxides 2004 2. Hydrogenation and Hydrogenolysis Reactions 2006

2,253 citations

Journal ArticleDOI
TL;DR: In this paper, an up-to-date perspective on the use of anion-exchange membranes in fuel cells, electrolysers, redox flow batteries, reverse electrodialysis cells, and bioelectrochemical systems (e.g. microbial fuel cells).
Abstract: This article provides an up-to-date perspective on the use of anion-exchange membranes in fuel cells, electrolysers, redox flow batteries, reverse electrodialysis cells, and bioelectrochemical systems (e.g. microbial fuel cells). The aim is to highlight key concepts, misconceptions, the current state-of-the-art, technological and scientific limitations, and the future challenges (research priorities) related to the use of anion-exchange membranes in these energy technologies. All the references that the authors deemed relevant, and were available on the web by the manuscript submission date (30th April 2014), are included.

1,526 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a comprehensive review with respect to the structure, chemistry, design and selection of materials, underlying mechanisms, and performance of each SOFC component, and it opens up the future directions towards pursuing SOFC research.

1,119 citations

Journal ArticleDOI
TL;DR: The physicochemical characteristics of spinels such as their compositions, structures, morphologies, defects, and substrates have been rationally regulated through various approaches and can yield spinels with improved ORR/OER catalytic activities, which can further accelerate the speed, prolong the life, and narrow the polarization of fuel cells, metal-air batteries, and water splitting devices.
Abstract: Spinels with the formula of AB2O4 (where A and B are metal ions) and the properties of magnetism, optics, electricity, and catalysis have taken significant roles in applications of data storage, biotechnology, electronics, laser, sensor, conversion reaction, and energy storage/conversion, which largely depend on their precise structures and compositions. In this review, various spinels with controlled preparations and their applications in oxygen reduction/evolution reaction (ORR/OER) and beyond are summarized. First, the composition and structure of spinels are introduced. Then, recent advances in the preparation of spinels with solid-, solution-, and vapor-phase methods are summarized, and new methods are particularly highlighted. The physicochemical characteristics of spinels such as their compositions, structures, morphologies, defects, and substrates have been rationally regulated through various approaches. This regulation can yield spinels with improved ORR/OER catalytic activities, which can furth...

1,036 citations

Journal ArticleDOI
TL;DR: The magnetocaloric effect and its most straightforward application, magnetic refrigeration, are topics of current interest due to the potential improvement of energy efficiency of cooling and temperature control systems, in combination with other environmental benefits associated to a technology that does not rely on the compression/expansion of harmful gases.

941 citations