scispace - formally typeset
Search or ask a question
Author

Erandi Pérez-Figueroa

Bio: Erandi Pérez-Figueroa is an academic researcher from Boston Children's Hospital. The author has contributed to research in topics: Cancer & Innate immune system. The author has an hindex of 4, co-authored 5 publications receiving 68 citations. Previous affiliations of Erandi Pérez-Figueroa include Mexican Social Security Institute.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a synthesis of the conditions and molecules implicated in the regulation and activation of the processes of neutrophil death: apoptosis, autophagy, pyroptosis, necroptosis and necrosis.
Abstract: Neutrophils or polymorphonuclear leukocytes (PMN) are key participants in the innate immune response for their ability to execute different effector functions. These cells express a vast array of membrane receptors that allow them to recognize and eliminate infectious agents effectively and respond appropriately to microenvironmental stimuli that regulate neutrophil functions, such as activation, migration, generation of reactive oxygen species, formation of neutrophil extracellular traps, and mediator secretion, among others. Currently, it has been realized that activated neutrophils can accomplish their effector functions and simultaneously activate mechanisms of cell death in response to different intracellular or extracellular factors. Although several studies have revealed similarities between the mechanisms of cell death of neutrophils and other cell types, neutrophils have distinctive properties, such as a high production of reactive oxygen species (ROS) and nitrogen species (RNS), that are important for their effector function in infections and pathologies such as cancer, autoimmune diseases, and immunodeficiencies, influencing their cell death mechanisms. The present work offers a synthesis of the conditions and molecules implicated in the regulation and activation of the processes of neutrophil death: apoptosis, autophagy, pyroptosis, necroptosis, NETosis, and necrosis. This information allows to understand the duality encountered by PMNs upon activation. The effector functions are carried out to eliminate invading pathogens, but in several instances, these functions involve activation of signaling cascades that culminate in the death of the neutrophil. This process guarantees the correct elimination of pathogenic agents, damaged or senescent cells, and the timely resolution of the inflammation that is essential for the maintenance of homeostasis in the organism. In addition, they alert the organism when the immunological system is being deregulated, promoting the activation of other cells of the immune system, such as B and T lymphocytes, which produce cytokines that potentiate the microbicide functions.

58 citations

Journal ArticleDOI
TL;DR: This study shows, for the first time, that H. pylori infection induces the expression and activation of components of NLRP3 inflammasomes in human neutrophils and that the activation is independent of a functional T4SS and TLR2 andTLR4.
Abstract: TLRs and NLRs participate in the immune system recognition of Helicobacter pylori. However, little is known about the mechanisms leading to inflammasome activation by H. pylori and if NLRs in neutrophils are involved in the process. We studied how NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome components are involved in IL-1β maturation in human neutrophils in response to the infection and if they are dependent on T4SS (type IV secretion system) and TLRs. Human neutrophils were cultured and infected with the 26695 or the VirD4- H. pylori strains; the IL-1β concentration was analyzed by ELISA, and we also evaluated the activation of TLRs 2 and 4. The infection of neutrophils with both strains of H. pylori induced production of IL-1β and expression of the NLRP3 inflammasome components such as apoptosis-associated speck-like protein with CARD domain and NLRP3 protein. The infection also increased the activity of caspase-1, which is required for the maturation of IL-1β. Our study shows, for the first time, that H. pylori infection induces the expression and activation of components of NLRP3 inflammasomes in human neutrophils and that the activation is independent of a functional T4SS and TLR2 and TLR4.

55 citations

Journal ArticleDOI
TL;DR: The results indicate that the circulating levels of seven of the important studied cytokines are elevated in patients with newly diagnosed ALL without apparent infection, reflecting a strong and deregulated inflammatory state in this disease, with a Th1-polarization profile.
Abstract: Children with acute lymphoblastic leukemia (ALL) often present fever. Febrile states are usually associated with infectious processes that generate an inflammatory response involving various molecules, including cytokines. However, an inflammatory response may also occur in the absence of infection. We hypothesized that the levels of inflammatory cytokines are increased in children with ALL without apparent infection. The serum levels of 13 cytokines in 99 patients with ALL and 48 non-oncological patients without apparent infection were measured using multiplex analyte profiling technology (Luminex®). The concentration of circulating pro-inflammatory cytokines associated with fever was similar between patients with ALL and fever at diagnosis and those without fever. The levels of tumor necrosis factor α, interleukin (IL)-6, IL-8, monocyte chemoattractant protein-1 (MCP-1) and IL-10 were higher in patients with ALL vs. the control group (P<0.05). Moreover, the levels of the T helper 1 (interferon‑γ and IL-12) cytokines were higher in patients with ALL vs. the control group. Transforming growth factor β was lower in patients with ALL vs. the control group (P<0.05). The levels of IL-1β, IL-2, IL-4, IL-13, and IL-17 were similar in the two groups. Our results indicate that the circulating levels of seven of the important studied cytokines are elevated in patients with newly diagnosed ALL without apparent infection, reflecting a strong and deregulated inflammatory state in this disease, with a Th1-polarization profile.

23 citations

Journal ArticleDOI
TL;DR: This study is the first to demonstrate reduced expression of Toll-like receptors in PBMCs from pediatric patients with ALL, which may partly explain the reduction in the antineoplastic immune response in patients withALL.
Abstract: Cancer is the second most common cause of death among children aged 1-14 years. Leukemia accounts for one-third of all childhood cancers, 78% of which is acute lymphoblastic leukemia (ALL). The development of cancer has been associated with malignant cells that express low levels of immunogenic molecules, which facilitates their escape from the antineoplastic immune response. It is thought that it may be possible to rescue the antineoplastic immune response through the activation of recognition receptors, such as Toll-like receptors (TLRs), which activate the innate immune system. TLRs are type I membrane glycoproteins expressed mainly in immune system cells such as monocytes, neutrophils, macrophages, dendritic cells, T, B and natural killer cells. The aim of the present study was to evaluate the expression of TLR1, TLR3, TLR4, TLR7 and TLR9 in peripheral blood mononuclear cells (PBMCs) in patients with ALL and prior to any treatment. PBMCs were obtained from 50 pediatric patients diagnosed with ALL and from 20 children attending the ophthalmology and orthopedics services. The mean fluorescence intensity was obtained by analysis of immunofluorescence. We found lower expression levels of TLR1, TLR3, TLR4, TLR7 and TLR9 in PBMCs from patients with ALL compared with those from control patients. We also observed that the PBMCs from patients with Pre-B and B ALL had lower TLR4 expression than controls and patients with Pro-B, Pre-B, B and T ALL had lower TLR7 expression than controls. The present study is the first to demonstrate reduced expression of TLRs in PBMCs from pediatric patients with ALL. This finding is of great relevance and may partly explain the reduction in the antineoplastic immune response in patients with ALL.

11 citations

Book ChapterDOI
19 Aug 2021
TL;DR: The major risk factors associated with the bacteria: cagPAI, CagA, VacA, HOPs, as well as host immune and inflammatory responses: immune cells, Toll-like receptors, cytokines, immune signal pathway, genetic predisposition, and environmental factors: age, high salt intake, diets low in fruit and vegetables, alcohol intake, and tobacco use are described.
Abstract: Gastric cancer is one of the types of cancer that is associated with Helicobacter pylori infection. The infection starts in childhood, and 50–90% of the population in the world is infected. The clinical symptoms can be stomach pain, gastritis, atrophy gastric, and only 2–3% of the infected population developed gastric cancer. The majority of gastric cancers are adenocarcinomas. From Lauren’s histological classification, gastric cancer is divided into two large groups: intestinal and diffuse. The cells that gives rise to them are different and the epidemiologic features and diagnosis are different according to gender and age; however; the survival rate is approximately of 5-years. Surgery is the only radical treatment, but the adjuvant treatment is chemotherapy and radiotherapy which unfortunately lead to only a modest survival benefit. On this review, we describe the major risk factors associated with the bacteria: cagPAI, CagA, VacA, HOPs, as well as host immune and inflammatory responses: immune cells, Toll-like receptors, cytokines, immune signal pathway, genetic predisposition, such as single nucleotide polymorphisms (SNP’s) and environmental factors: age, high salt intake, diets low in fruit and vegetables, alcohol intake, and tobacco use. Finally, we included the interaction of all factors for the development of gastric cancer. Knowing and understanding the role of all factors in the development of gastric cancer will allow the implementation of better therapies and improve patient prognosis.

2 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of inflammasome biology in relation to the gastrointestinal tract is presented, with insights into how targeted interventions might be useful to treat inflammaome-mediated gastrointestinal diseases.
Abstract: Inflammasome signalling is an emerging pillar of innate immunity and has a central role in the regulation of gastrointestinal health and disease. Activation of the inflammasome complex mediates both the release of the pro-inflammatory cytokines IL-1β and IL-18 and the execution of a form of inflammatory cell death known as pyroptosis. In most cases, these mediators of inflammation provide protection against bacterial, viral and protozoal infections. However, unchecked inflammasome activities perpetuate chronic inflammation, which underpins the molecular and pathophysiological basis of gastritis, IBD, upper and lower gastrointestinal cancer, nonalcoholic fatty liver disease and obesity. Studies have also highlighted an inflammasome signature in the maintenance of gut microbiota and gut-brain homeostasis. Harnessing the immunomodulatory properties of the inflammasome could transform clinical practice in the treatment of acute and chronic gastrointestinal and extragastrointestinal diseases. This Review presents an overview of inflammasome biology in gastrointestinal health and disease and describes the value of experimental and pharmacological intervention in the treatment of inflammasome-associated clinical manifestations.

181 citations

Journal ArticleDOI
TL;DR: This review presents a comprehensive overview of the mechanisms of microbe-induced activation of the inflammasome and the functional consequences of inflammaome activation in infectious diseases and explores the microbial strategies used in the evasion of infammasome sensing at the host-microbe interaction interface.
Abstract: Infection is a dynamic biological process underpinned by a complex interplay between the pathogen and the host. Microbes from all domains of life, including bacteria, viruses, fungi, and protozoan parasites, have the capacity to cause infection. Infection is sensed by the host, which often leads to activation of the inflammasome, a cytosolic macromolecular signaling platform that mediates the release of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18 and cleavage of the pore-forming protein gasdermin D, leading to pyroptosis. Host-mediated sensing of the infection occurs when pathogens inject or carry pathogen-associated molecular patterns (PAMPs) into the cytoplasm or induce damage that causes cytosolic liberation of danger-associated molecular patterns (DAMPs) in the host cell. Recognition of PAMPs and DAMPs by inflammasome sensors, including NLRP1, NLRP3, NLRC4, NAIP, AIM2, and Pyrin, initiates a cascade of events that culminate in inflammation and cell death. However, pathogens can deploy virulence factors capable of minimizing or evading host detection. This review presents a comprehensive overview of the mechanisms of microbe-induced activation of the inflammasome and the functional consequences of inflammasome activation in infectious diseases. We also explore the microbial strategies used in the evasion of inflammasome sensing at the host-microbe interaction interface.

117 citations

Journal ArticleDOI
TL;DR: How NLR signaling is involved in inflammation-associated cancers, and the NLR-targeted botanicals and synthetic small molecules in cancer intervention are discussed, are highlighted, and may be correlated with senescence-associated secretory phenotype.

73 citations

Journal ArticleDOI
TL;DR: A review of known carcinogenic effects of Helicobacter pylori can be found in this article, where the authors discuss recent findings that implicate host genetic pattern recognition pathways in the development of gastric cancer and their relation with H.pylori infection.

59 citations

Journal ArticleDOI
TL;DR: In this paper, a synthesis of the conditions and molecules implicated in the regulation and activation of the processes of neutrophil death: apoptosis, autophagy, pyroptosis, necroptosis and necrosis.
Abstract: Neutrophils or polymorphonuclear leukocytes (PMN) are key participants in the innate immune response for their ability to execute different effector functions. These cells express a vast array of membrane receptors that allow them to recognize and eliminate infectious agents effectively and respond appropriately to microenvironmental stimuli that regulate neutrophil functions, such as activation, migration, generation of reactive oxygen species, formation of neutrophil extracellular traps, and mediator secretion, among others. Currently, it has been realized that activated neutrophils can accomplish their effector functions and simultaneously activate mechanisms of cell death in response to different intracellular or extracellular factors. Although several studies have revealed similarities between the mechanisms of cell death of neutrophils and other cell types, neutrophils have distinctive properties, such as a high production of reactive oxygen species (ROS) and nitrogen species (RNS), that are important for their effector function in infections and pathologies such as cancer, autoimmune diseases, and immunodeficiencies, influencing their cell death mechanisms. The present work offers a synthesis of the conditions and molecules implicated in the regulation and activation of the processes of neutrophil death: apoptosis, autophagy, pyroptosis, necroptosis, NETosis, and necrosis. This information allows to understand the duality encountered by PMNs upon activation. The effector functions are carried out to eliminate invading pathogens, but in several instances, these functions involve activation of signaling cascades that culminate in the death of the neutrophil. This process guarantees the correct elimination of pathogenic agents, damaged or senescent cells, and the timely resolution of the inflammation that is essential for the maintenance of homeostasis in the organism. In addition, they alert the organism when the immunological system is being deregulated, promoting the activation of other cells of the immune system, such as B and T lymphocytes, which produce cytokines that potentiate the microbicide functions.

58 citations