scispace - formally typeset
Search or ask a question
Author

Eri Arai

Bio: Eri Arai is an academic researcher from University of Pennsylvania. The author has contributed to research in topics: Homologous recombination & DNA repair. The author has an hindex of 5, co-authored 7 publications receiving 80 citations.

Papers
More filters
Journal ArticleDOI
04 Mar 2021-Cell
TL;DR: In this paper, the authors developed an in-vivo T-cell CRISPR screening platform and identified a key mechanism restraining TEFF biology through the ETS family TF, Fli1.

74 citations

Journal ArticleDOI
TL;DR: Using a CRISPR-based screen, this article identified the PAR-binding chromatin remodeller ALC1/CHD1L as a key determinant of PARPi toxicity in HR-deficient cells.
Abstract: The response to poly(ADP-ribose) polymerase inhibitors (PARPi) is dictated by homologous recombination (HR) DNA repair and the abundance of lesions that trap PARP enzymes. It remains unclear, however, if the established role of PARP in promoting chromatin accessibility impacts viability in these settings. Using a CRISPR-based screen, we identified the PAR-binding chromatin remodeller ALC1/CHD1L as a key determinant of PARPi toxicity in HR-deficient cells. ALC1 loss reduced viability of breast cancer gene (BRCA)-mutant cells and enhanced sensitivity to PARPi by up to 250-fold, while overcoming several resistance mechanisms. ALC1 deficiency reduced chromatin accessibility concomitant with a decrease in the association of base damage repair factors. This resulted in an accumulation of replication-associated DNA damage, increased PARP trapping and a reliance on HR. These findings establish PAR-dependent chromatin remodelling as a mechanistically distinct aspect of PARPi responses and therapeutic target in HR-deficient cancers.

70 citations

Posted ContentDOI
16 Dec 2020-bioRxiv
TL;DR: Using a CRISPR based screen, this work identifies the PAR-binding Snf2-like ATPase, ALC1/CHD1L, as a key determinant of PARPi toxicity in HR-deficient cells, and establishes PAR-dependent chromatin remodeling as a mechanistically distinct aspect ofPARPi responses, implicating A LC1 inhibition as a new approach to overcome therapeutic resistance in HR -deficient cancers.
Abstract: The response to Poly (ADP-ribose) polymerase inhibitors (PARPi) is dictated by homologous recombination (HR) DNA repair mechanisms and the abundance of lesions that trap PARP enzymes on chromatin. It remains unclear, however, if the established role of PARP in promoting chromatin accessibility impacts viability in these settings. Using a CRISPR based screen, we identify the PAR-binding Snf2-like ATPase, ALC1/CHD1L, as a key determinant of PARPi toxicity in HR-deficient cells. ALC1 loss reduced viability of BRCA mutant cells and enhanced their sensitivity to PARPi by up to 250-fold, while overcoming several known resistance mechanisms. ALC1 loss was not epistatic to other repair pathways that execute the PARPi response. Instead, ALC1 deficiency reduced chromatin accessibility concomitant with a decrease in the association of repair factors. This resulted in an accumulation of replication associated DNA damage and a reliance on HR. These findings establish PAR-dependent chromatin remodeling as a mechanistically distinct aspect of PARPi responses, implicating ALC1 inhibition as a new approach to overcome therapeutic resistance in HR-deficient cancers.

38 citations

Journal ArticleDOI
TL;DR: In melanoma, transient fluctuations in the molecular state of tumor cells mark the formation of rare cells primed to survive BRAF inhibition and reprogram into a stably drug-resistant fate as discussed by the authors.
Abstract: Cellular plasticity describes the ability of cells to transition from one set of phenotypes to another. In melanoma, transient fluctuations in the molecular state of tumor cells mark the formation of rare cells primed to survive BRAF inhibition and reprogram into a stably drug-resistant fate. However, the biological processes governing cellular priming remain unknown. We used CRISPR-Cas9 genetic screens to identify genes that affect cell fate decisions by altering cellular plasticity. We found that many factors can independently affect cellular priming and fate decisions. We discovered a new plasticity-based mode of increasing resistance to BRAF inhibition that pushes cells towards a more differentiated state. Manipulating cellular plasticity through inhibition of DOT1L before the addition of the BRAF inhibitor resulted in more therapy resistance than concurrent administration. Our results indicate that modulating cellular plasticity can alter cell fate decisions and may prove useful for treating drug resistance in other cancers.

27 citations

Journal ArticleDOI
23 Feb 2017-PLOS ONE
TL;DR: This method takes advantage of the heterogeneous in-frame alleles produced following Cas9-mediated DNA cleavage to generate rare alleles that confer resistance to the growth-arrest caused by chemical inhibitors and identifies novel resistance alleles of two lysine methyltransferases, DOT1L and EZH2, which are each essential for the growth of MLL-fusion leukemia cells.
Abstract: Genetic alterations conferring resistance to the effects of chemical inhibitors are valuable tools for validating on-target effects in cells. Unfortunately, for many therapeutic targets such alleles are not available. To address this issue, we evaluated whether CRISPR-Cas9-mediated insertion/deletion (indel) mutagenesis can produce drug-resistance alleles at endogenous loci. This method takes advantage of the heterogeneous in-frame alleles produced following Cas9-mediated DNA cleavage, which we show can generate rare alleles that confer resistance to the growth-arrest caused by chemical inhibitors. We used this approach to identify novel resistance alleles of two lysine methyltransferases, DOT1L and EZH2, which are each essential for the growth of MLL-fusion leukemia cells. We biochemically characterized the DOT1L mutation, showing that it is significantly more active than the wild-type enzyme. These findings validate the on-target anti-leukemia activities of existing DOT1L and EZH2 inhibitors and reveal a simple method for deriving drug-resistance alleles for novel targets, which may have utility during early stages of drug development.

25 citations


Cited by
More filters
01 Apr 2016
TL;DR: Tirosh et al. as discussed by the authors applied single-cell RNA sequencing (RNA-seq) to 4645 single cells isolated from 19 patients, profiling malignant, immune, stromal, and endothelial cells.
Abstract: Single-cell expression profiles of melanoma Tumors harbor multiple cell types that are thought to play a role in the development of resistance to drug treatments. Tirosh et al. used single-cell sequencing to investigate the distribution of these differing genetic profiles within melanomas. Many cells harbored heterogeneous genetic programs that reflected two different states of genetic expression, one of which was linked to resistance development. Following drug treatment, the resistance-linked expression state was found at a much higher level. Furthermore, the environment of the melanoma cells affected their gene expression programs. Science, this issue p. 189 Melanoma cells show transcriptional heterogeneity. To explore the distinct genotypic and phenotypic states of melanoma tumors, we applied single-cell RNA sequencing (RNA-seq) to 4645 single cells isolated from 19 patients, profiling malignant, immune, stromal, and endothelial cells. Malignant cells within the same tumor displayed transcriptional heterogeneity associated with the cell cycle, spatial context, and a drug-resistance program. In particular, all tumors harbored malignant cells from two distinct transcriptional cell states, such that tumors characterized by high levels of the MITF transcription factor also contained cells with low MITF and elevated levels of the AXL kinase. Single-cell analyses suggested distinct tumor microenvironmental patterns, including cell-to-cell interactions. Analysis of tumor-infiltrating T cells revealed exhaustion programs, their connection to T cell activation and clonal expansion, and their variability across patients. Overall, we begin to unravel the cellular ecosystem of tumors and how single-cell genomics offers insights with implications for both targeted and immune therapies.

823 citations

Journal ArticleDOI
TL;DR: This review discusses plant-based natural product drug discovery and how innovative technologies play a role in next-generation drug discovery.
Abstract: The therapeutic properties of plants have been recognised since time immemorial. Many pathological conditions have been treated using plant-derived medicines. These medicines are used as concoctions or concentrated plant extracts without isolation of active compounds. Modern medicine however, requires the isolation and purification of one or two active compounds. There are however a lot of global health challenges with diseases such as cancer, degenerative diseases, HIV/AIDS and diabetes, of which modern medicine is struggling to provide cures. Many times the isolation of “active compound” has made the compound ineffective. Drug discovery is a multidimensional problem requiring several parameters of both natural and synthetic compounds such as safety, pharmacokinetics and efficacy to be evaluated during drug candidate selection. The advent of latest technologies that enhance drug design hypotheses such as Artificial Intelligence, the use of ‘organ-on chip’ and microfluidics technologies, means that automation has become part of drug discovery. This has resulted in increased speed in drug discovery and evaluation of the safety, pharmacokinetics and efficacy of candidate compounds whilst allowing novel ways of drug design and synthesis based on natural compounds. Recent advances in analytical and computational techniques have opened new avenues to process complex natural products and to use their structures to derive new and innovative drugs. Indeed, we are in the era of computational molecular design, as applied to natural products. Predictive computational softwares have contributed to the discovery of molecular targets of natural products and their derivatives. In future the use of quantum computing, computational softwares and databases in modelling molecular interactions and predicting features and parameters needed for drug development, such as pharmacokinetic and pharmacodynamics, will result in few false positive leads in drug development. This review discusses plant-based natural product drug discovery and how innovative technologies play a role in next-generation drug discovery.

624 citations

Journal ArticleDOI
John G. Doench1
TL;DR: This Review intends to guide users through the process of applying CRISPR technology to their biological problems of interest, especially in the context of discovering gene function at scale.
Abstract: Exciting new technologies are often self-limiting in their rollout, as access to state-of-the-art instrumentation or the need for years of hands-on experience, for better or worse, ensures slow adoption by the community. CRISPR technology, however, presents the opposite dilemma, where the simplicity of the system enabled the parallel development of many applications, improvements and derivatives, and new users are now presented with an almost paralyzing abundance of choices. This Review intends to guide users through the process of applying CRISPR technology to their biological problems of interest, especially in the context of discovering gene function at scale.

304 citations

Journal ArticleDOI
TL;DR: The past several years have seen an explosion in development of applications for the CRISPR-Cas9 system, from efficient genome editing, to high-throughput screening, to recruitment of a range of DNA and chromatin-modifying enzymes.

189 citations

Journal ArticleDOI
TL;DR: CRISPR systems are being robustly adapted to improve the efficacy of immunotherapies by enhancing their potency, mitigating toxicity, reducing manufacturing cost and facilitating the discovery and development of new immunotherapeutic strategies.
Abstract: In the past decade, the development of a genome-editing technology mediated by CRISPR has made genetic engineering easier than ever, both in vitro and in vivo. CRISPR systems have enabled important advances in cancer research by accelerating the development of study models or as a tool in genetic screening studies, including those aiming to discover and validate therapeutic targets. In this Review, we discuss these applications as well as new potential uses of CRISPR to assist in cancer detection or the development of anticancer therapies.

120 citations