Author
Eri Matsuyama
Other affiliations: RMIT University
Bio: Eri Matsuyama is an academic researcher from Niigata University. The author has contributed to research in topics: Image quality & Image noise. The author has an hindex of 6, co-authored 24 publications receiving 319 citations. Previous affiliations of Eri Matsuyama include RMIT University.
Papers
More filters
TL;DR: Experimental results show that the amount of TI is closely related to both image noise and image blurring, which demonstrates the usefulness of the proposed method for evaluation of physical image quality in medical imaging.
Abstract: This paper presents a simple and straightforward method for synthetically evaluating digital radiographic images by a single parameter in terms of transmitted information (TI). The features of our proposed method are (1) simplicity of computation, (2) simplicity of experimentation, and (3) combined assessment of image noise and resolution (blur). Two acrylic step wedges with 0–1–2–3–4–5 and 0–2–4–6–8–10 mm in thickness were used as phantoms for experiments. In the present study, three experiments were conducted. First, to investigate the relation between the value of TI and image noise, various radiation doses by changing exposure time were employed. Second, we examined the relation between the value of TI and image blurring by shifting the phantoms away from the center of the X-ray beam area toward the cathode end when imaging was performed. Third, we analyzed the combined effect of deteriorated blur and noise on the images by employing three smoothing filters. Experimental results show that the amount of TI is closely related to both image noise and image blurring. The results demonstrate the usefulness of our method for evaluation of physical image quality in medical imaging.
262 citations
TL;DR: The method developed has the potential to detect the MCA dot sign of acute stroke on unenhanced CT images and was evaluated by means of a leave-one-case out method.
Abstract: The hyperdense middle cerebral artery (MCA) dot sign representing a thromboembolus is one of the important computed tomography (CT) findings for acute stroke on unenhanced CT images. Our purpose in this study was to develop an automated method for detection of the MCA dot sign of acute stroke on unenhanced CT images. The algorithm of the method which we developed consisted of 5 major steps: extraction of the sylvian fissure region, initial identification of MCA dots based on the morphologic top-hat transformation, feature extraction of candidates, elimination of false positives (FPs) by use of a rule-based scheme, and classification of candidates using a support vector machine (SVM) classifier with four features. Our database comprised 297 CT images obtained from seven patients with the MCA dot sign. The performance of this scheme for classification of the MCA dot sign was evaluated by means of a leave-one-case out method. The performance of the classification by use of the SVM achieved a maximum sensitivity of 97.5 % (39/40) at a FP rate of 1.28 per image. The sensitivity for detection of the MCA dot sign was 97.5 % (39/40) with a FP rate of 0.5 per hemisphere. The method we developed has the potential to detect the MCA dot sign of acute stroke on unenhanced CT images.
47 citations
TL;DR: The results showed that with the use of the proposed method the computation time can be reduced to approximately 1/10 of the conventional UDWT method consumed, and the results of visual assessment indicated that the images processed with the proposed UD WT method showed statistically significant superior image quality over those processing with the conventionalUDWT method.
Abstract: In this work, the authors present an effective denoising method to attempt reducing the noise in mammographic images. The method is based on using hierarchical correlation of the coefficients of discrete stationary wavelet transforms. The features of the proposed technique include iterative use of undecimated multi-directional wavelet transforms at adjacent scales. To validate the proposed method, computer simulations were conducted, followed by its applications to clinical mammograms. Mutual information originating from information theory was used as an evaluation measure for selection of an optimal wavelet basis function. We examined the performance of the proposed method by comparing it with the conventional undecimated discrete wavelet transform (UDWT) method in terms of processing time-consuming and image quality. Our results showed that with the use of the proposed method the computation time can be reduced to approximately 1/10 of the conventional UDWT method consumed. The results of visual assessment indicated that the images processed with the proposed UDWT method showed statistically significant superior image quality over those processed with the conventional UDWT method. Our research results demonstrate the superiority and effectiveness of the proposed approach.
33 citations
TL;DR: The proposed convolutional neural network-based model, a ResNet-50 based model, could provide a promising computerized toolkit to help radiologists and serve as a second eye for them to classify COVID-19 in CT scan screening examination.
Abstract: In this article, we propose a convolutional neural network (CNN)-based model, a ResNet-50 based model, for discriminating coronavirus disease 2019 (COVID-19) from Non-COVID-19 using chest CT. We adopted the use of wavelet coefficients of the entire image without cropping any parts of the image as input to the CNN model. One of the main contributions of this study is to implement an algorithm called gradient-weighted class activation mapping to produce a heat map for visually verifying where the CNN model is looking at the image, thereby, ensuring the model is performing correctly. In order to verify the effectiveness and usefulness of the proposed method, we compare the obtained results with that obtained by using pixel values of original images as input to the CNN model. The measures used for performance evaluation include accuracy, sensitivity, specificity, positive predictive value, negative predictive value, F1 score, and Matthews correlation coefficient (MCC). The overall classification accuracy, F1 score, and MCC for the proposed method (using wavelet coefficients as input) were 92.2%, 0.915%, and 0.839%, and those for the compared method (using pixel values of the original image as input) were 88.3%, 0.876%, and 0.766%, respectively. The experiment results demonstrate the superiority of the proposed method. Moreover, as a comprehensible classification model, the interpretability of classification results was introduced. The region of interest extracted by the proposed model was visualized using heat maps and the probability score was also shown. We believe that our proposed method could provide a promising computerized toolkit to help radiologists and serve as a second eye for them to classify COVID-19 in CT scan screening examination.
18 citations
TL;DR: This paper used a CNN combined with a wavelet transform approach for classifying a dataset of 448 lung CT images into 4 categories, e.g. lung adenocarcinoma, lung squamous cell carcinoma, metastatic lung cancer, and normal.
Abstract: Recently, convolutional neural networks (CNNs) have been utilized in medical imaging research field and have successfully shown their ability in image classification and detection. In this paper we used a CNN combined with a wavelet transform approach for classifying a dataset of 448 lung CT images into 4 categories, e.g. lung adenocarcinoma, lung squamous cell carcinoma, metastatic lung cancer, and normal. The key difference between the commonly-used CNNs and the presented method is that in this method, we adopt the use of redundant wavelet coefficients at level 1 as inputs to the CNN, instead of using original images. One of the main advantages of the proposed method is that it is not necessary to extract regions of interest from original images. The wavelet coefficients of the entire image are used as inputs to the CNN. We compare the classification performance of the proposed method to that of an existing CNN classifier and a CNN-based support vector machine classifier. The experimental results show that the proposed method outperforms the other two methods and achieve the highest overall accuracy of 91.9%. It demonstrates the potential for use in classification of lung diseases in CT images.
16 citations
Cited by
More filters
[...]
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality.
Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …
33,785 citations
1,275 citations
01 Jan 2016
TL;DR: The two dimensional signal and image processing is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can download it instantly.
Abstract: Thank you for downloading two dimensional signal and image processing. As you may know, people have look hundreds times for their chosen novels like this two dimensional signal and image processing, but end up in malicious downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they juggled with some infectious virus inside their computer. two dimensional signal and image processing is available in our book collection an online access to it is set as public so you can download it instantly. Our digital library spans in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the two dimensional signal and image processing is universally compatible with any devices to read.
253 citations
TL;DR: This paper proposes a straightforward method for detecting adversarial image examples, which can be directly deployed into unmodified off-the-shelf DNN models and raises the bar for defense-aware attacks.
Abstract: Recently, many studies have demonstrated deep neural network (DNN) classifiers can be fooled by the adversarial example, which is crafted via introducing some perturbations into an original sample. Accordingly, some powerful defense techniques were proposed. However, existing defense techniques often require modifying the target model or depend on the prior knowledge of attacks. In this paper, we propose a straightforward method for detecting adversarial image examples, which can be directly deployed into unmodified off-the-shelf DNN models. We consider the perturbation to images as a kind of noise and introduce two classic image processing techniques, scalar quantization and smoothing spatial filter , to reduce its effect. The image entropy is employed as a metric to implement an adaptive noise reduction for different kinds of images. Consequently, the adversarial example can be effectively detected by comparing the classification results of a given sample and its denoised version, without referring to any prior knowledge of attacks. More than 20,000 adversarial examples against some state-of-the-art DNN models are used to evaluate the proposed method, which are crafted with different attack techniques. The experiments show that our detection method can achieve a high overall F1 score of 96.39 percent and certainly raises the bar for defense-aware attacks.
185 citations
TL;DR: A glimpse at the use of AI in stroke imaging is offered, specifically focusing on its technical principles, clinical application, and future perspectives.
Abstract: Artificial intelligence (AI), a computer system aiming to mimic human intelligence, is gaining increasing interest and is being incorporated into many fields, including medicine. Stroke medicine is one such area of application of AI, for improving the accuracy of diagnosis and the quality of patient care. For stroke management, adequate analysis of stroke imaging is crucial. Recently, AI techniques have been applied to decipher the data from stroke imaging and have demonstrated some promising results. In the very near future, such AI techniques may play a pivotal role in determining the therapeutic methods and predicting the prognosis for stroke patients in an individualized manner. In this review, we offer a glimpse at the use of AI in stroke imaging, specifically focusing on its technical principles, clinical application, and future perspectives.
165 citations