scispace - formally typeset
Search or ask a question
Author

Eric A. C. Bushnell

Bio: Eric A. C. Bushnell is an academic researcher from Brandon University. The author has contributed to research in topics: Density functional theory & QM/MM. The author has an hindex of 11, co-authored 35 publications receiving 330 citations. Previous affiliations of Eric A. C. Bushnell include Dalhousie University & University of Windsor.

Papers
More filters
Journal ArticleDOI
TL;DR: The present results suggest that formation of the sulfoxide-containing products is a consequence of the reduction of a powerful Fe(III)OOS oxidant via a PCET.
Abstract: A density functional theory cluster and first-principles quantum and statistical mechanics approach have been used to investigate the ability of iron–oxygen intermediates to oxidize a histidine cosubstrate, which may then allow for the possible formation of 2- and 5-histidylcysteine sulfoxide, respectively. Namely, the ability of ferric superoxo (FeIIIO2•–), FeIV═O, and ferrous peroxysulfur (FeIIIOOS) complexes to oxidize the imidazole of histidine via an electron transfer (ET) or a proton-coupled electron transfer (PCET) was considered. While the high-valent mononuclear FeIV═O species is generally considered the ultimate biooxidant, the free energies for its reduction (via ET or PCET) suggest that it is unable to directly oxidize histidine’s imidazole. Instead, only the ferrous peroxysulfur complexes are sufficiently powerful enough oxidants to generate a histidyl-derived radical via a PCET process. Furthermore, while this process preferably forms a HisNδ(−H)• radical, several such oxidants are also sugg...

30 citations

Journal ArticleDOI
TL;DR: Schiff bases are common and important intermediates in many bioenzymatic systems as discussed by the authors, however, the mechanism by which they are formed, however,is dependent on the solvent, pH and other factors.

27 citations

Journal ArticleDOI
TL;DR: The binding of OSH and ESH with Cu ions disfavors Cu(I)/Cu(II) recycling and inhibits the potential oxidative damage caused by such Cu ions, and the implications for their ability to protect against Cu-mediated oxidative damage are discussed.
Abstract: The ability of hybrid, nonhybrid and meta-GGA density functional theory (DFT) based methods (B3LYP, BP86, M06 and M06L) to provide reliable structures and thermochemical properties of biochemically important Cu(I)/(II)···ESH (ergothioneine) and ···OSH (ovothiol) has been assessed. For all functionals considered, convergence in the optimized structures and Cu(I)/(II)···S/N bond lengths is only obtained using the 6-311+G(2df,p) basis set or larger, with the nonhybrid DFT method BP86 appearing, in general, to provide the most reliable structures. The reduction potentials associated with the reduction of Cu(II) to Cu(I) when complexed with either OSH and ESH were also determined. The implications for their ability to thus help protect against Cu-mediated oxidative damage are discussed. Importantly, the binding of OSH and ESH with Cu ions disfavors Cu(I)/Cu(II) recycling by increasing the reduction potential for the Cu(II) to Cu(I) reduction and as a result, inhibits the potential oxidative damage caused by such Cu ions.

26 citations

Journal ArticleDOI
TL;DR: The bisdiselenolene complexes show similar multireference character as the bisdithiolene complexes, which were previously shown to have such character.
Abstract: We performed an assessment of 10 common DFT functionals to determine their suitability for calculating the reduction potentials of the ([M(S2C2H2)2]0/[M(S2C2H2)2]1–), ([M(Se2C2H2)2]0/[M(Se2C2H2)2]1–), ([M(S2C2H2)2]1–/[M(S2C2H2)2]2–), and ([M(Se2C2H2)2]1–/[M(Se2C2H2)2]2–) redox couples (M = Ni, Pd, and Pt). Overall it was found that the M06 functional leads to the best agreement with the gold standard CCSD(T) method with an average difference of only +0.07 V and a RMS of 0.07 V in calculated reduction potentials. The variability in calculated reduction potentials between the various DFT functionals arise, in part, from the multireference character of these systems, which was determined by the T1 diagnostic values. Thus, the bisdiselenolene complexes show similar multireference character as the bisdithiolene complexes, which were previously shown to have such character. In particular, for the Ni–, Pd–, and Pt–bisdiselenolene complexes the average T1 values are 0.05, 0.03, and 0.02, respectively. For the CCS...

25 citations

Journal ArticleDOI
TL;DR: It is observed that the computed relative free energies of stationary points along the overall pathway are sensitive to the choice of DFT functional, while the mechanism obtained is generally not, and the inclusion of dispersion effects leads to the suggestion that the overall mechanism of cAOS could occur without the need for spin inversion.
Abstract: In this present work the mechanism by which cAOS catalyzes the formation of allene oxide from its hydroperoxy substrate was computationally investigated by using a DFT-chemical cluster approach. In particular, the effects of dispersion interactions and DFT functional choice (M06, B3LYP, B3LYP*, and BP86), as well as the roles of multistate reactivity and the tyrosyl proximal ligand, were examined. It is observed that the computed relative free energies of stationary points along the overall pathway are sensitive to the choice of DFT functional, while the mechanism obtained is generally not. Large reductions in relative free energies for stationary points along the pathway (compared to the initial reactant complex) of on average 46.3 and 97.3 kJ mol(-1) for the doublet and quartet states, respectively, are observed upon going from the M06 to BP86 functional. From results obtained by using the B3LYP* method, well-tested previously on heme-containing systems, the mechanism of cAOS appears to occur with considerably higher Gibbs free energies than that for the analogous pathway in pAOS, possibly due to the presence of a ligating tyrosyl residue in cAOS. Furthermore, at the IEFPCM-B3LYP*/6-311+G(2df,p)//B3LYP/BS1 level of theory the inclusion of dispersion effects leads to the suggestion that the overall mechanism of cAOS could occur without the need for spin inversion.

25 citations


Cited by
More filters
01 Feb 1995
TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

1,652 citations

Journal ArticleDOI
TL;DR: Chemical recycling of CO2 to renewable fuels and materials, primarily methanol, offers a powerful alternative to tackle both issues, that is, global climate change and fossil fuel depletion.
Abstract: Starting with coal, followed by petroleum oil and natural gas, the utilization of fossil fuels has allowed the fast and unprecedented development of human society. However, the burning of these resources in ever increasing pace is accompanied by large amounts of anthropogenic CO2 emissions, which are outpacing the natural carbon cycle, causing adverse global environmental changes, the full extent of which is still unclear. Even through fossil fuels are still abundant, they are nevertheless limited and will, in time, be depleted. Chemical recycling of CO2 to renewable fuels and materials, primarily methanol, offers a powerful alternative to tackle both issues, that is, global climate change and fossil fuel depletion. The energy needed for the reduction of CO2 can come from any renewable energy source such as solar and wind. Methanol, the simplest C1 liquid product that can be easily obtained from any carbon source, including biomass and CO2, has been proposed as a key component of such an anthropogenic carbon cycle in the framework of a “Methanol Economy”. Methanol itself is an excellent fuel for internal combustion engines, fuel cells, stoves, etc. It's dehydration product, dimethyl ether, is a diesel fuel and liquefied petroleum gas (LPG) substitute. Furthermore, methanol can be transformed to ethylene, propylene and most of the petrochemical products currently obtained from fossil fuels. The conversion of CO2 to methanol is discussed in detail in this review.

1,012 citations

01 Jan 2016
TL;DR: “Essentials” covers force field and molecular orbital theory, Monte Carlo and Molecular Dynamics simulations, thermodynamic and electronic (spectroscopic) property calculation, condensed phase treatment and a few more topics, and is an alternative to Andrew R. Leach's well-established “Molecular Modeling” and Frank Jensen’s “Introduction to Computational Chemistry”.
Abstract: The fact that a new text book introducing the essentials of computational chemistry contains more than 500 pages shows impressively the grown and still growing size and importance of this field of chemistry. The author’s objectives of the book, using his own words, are “to provide a survey of computational chemistry its underpinnings, its jargon, its strengths and weaknesses that will be accessible to both the experimental and theoretical communities”. This design as a general introduction into computational chemistry makes it an alternative to Andrew R. Leach’s well-established “Molecular Modeling” (Prentice Hall) and Frank Jensen’s “Introduction to Computational Chemistry” (Wiley), although the latter focuses on the theory of electronic structure methods. Cramer’s “Essentials” covers force field and molecular orbital theory, Monte Carlo and Molecular Dynamics simulations, thermodynamic and electronic (spectroscopic) property calculation, condensed phase treatment and a few more topics. Moreover, the book contains thirteen selected case studies sexamples taken from the literature sto illustrate the application of the just presented theoretical and computational models. This especially makes the text book well suited for both classroom discussion and self-study. Each chapter of “Essentials” covers a main topic of computational chemistry and will be briefly described here; all chapters are ended by a bibliography and suggested additional readings as well as the literature references cited in the text. In chapter 1 the author defines basic terms such as “theory”, “model”, and “computation”, introduces the concept of the potential energy surface and provides some general considerations about hardware and software. Interestingly, the first equation occurring in the text is not Schro ̈dinger’s equation, as is the case for most computational chemistry introductions, but the famous Einstein relation. The second chapter deals with molecular mechanics. It explains the different potential energy contributions, introduces the field of structure optimization, and provides an overview of the variety of modern force fields. Chapter 3 covers the simulation of molecular ensembles. It defines phase space and trajectories and shows the formalism of, and problems and difference between, Monte Carlo and molecular dynamics. In chapter 4 the author introduces the foundations of molecular orbital theory. Basic concepts such as Hamilton operator, LCAO basis set approach, many-electron wave functions, etc. are explained. To illuminate the LCAO variational process, the Hu ̈ckel theory is presented with an example. Chapter 5 deals with semiempirical molecular orbital (MO) theory. Besides the classical approaches (extended Hu ̈ckel, CNDO, INDO, NDDO) and methods (e.g., MNDO, AM1, PM3) and their performance, examples are provided from the ongoing development in that still fascinating area. Ab initio MO theory is presented in chapter 6; the basis set concept is discussed in detail, and, after some considerations from an user’s point of view, the general performance of ab initio methods is explicated. The next chapter covers the problem of electron correlation and gives the most prominent solutions for its treatment: configuration interaction, theory of the multiconfiguration self-consistent field, perturbation, and coupled cluster. Practical issues are also discussed. Chapter 8’s topic is density functional theory (DFT). Its theoretical foundation, methodology, and some functionals as well as its pros and cons compared to MO theory are presented together with a general performance overview. The next two chapters deal with charge distribution, derived and spectroscopic properties (e.g., atomic charges, polarizability, rotational, vibrational, and NMR spectra), and thermodynamic properties (e.g., zero-point vibrational energy, free energy of formation, and reaction). The modeling of condensed phases is addressed in chapters 11 (implicit models) and 12 (explicit models), which closes with a comparison between the two approaches. Chapter 13 familiarizes the reader with hybrid quantum mechanical/molecular mechanical (QM/MM) models. Polarization as well as the problematic implications of unsaturated QM and MM components are discussed, and empirical valence bond methods are also presented. The treatment of excited states is the topic of chapter 14; besides CI and MCSCF as computational methods, transition probabilities and solvatochromism are discussed. The last chapter deals with reaction dynamics, mostly adiabaticskinetics, rate constants, reaction paths, and transition state theory are section topics here sbut also nonadiabatic, introducing curve crossing and Marcus theory in brief. The appendix is divided into four parts: an acronym glossary (which is very helpful), an overview of symmetry and group theory, an introduction to spin algebra, and finally a section about orbital localization. A rather detailed index ends the book. The “Essentials” writing style fits the fascinating topic: one reads on and on andssurprise! sanother chapter has been absorbed. The text is complemented by a large number of black and white figures and clear tables, mostly self-explanatory with descriptive captions. The use of equations and mathematical formulas in general is well-balanced, and the level of math should be understandable for every natural scientist with some basic knowledge of physics. There are only a few minor shortcomings: for example, a literature reference cited in the text (“Beck et al.”, p 142) is missing in the bibliography; “Kronecker” is mistyped with o ̈; and the author completely forgot to reference Leach’s text book when referring to other computational chemistry introductions. However, the author has established a specific errata web page (http://pollux.chem.umn.edu/ ∼cramer/Errors.html) with all known errors. These will be corrected in the next printing or next revised edition, respectively. With its emphasis, on one hand, on the basic concepts and applications rather than pure theory and mathematics, and on the other hand, coverage of quantum mechanical and classical mechanical models including examples from inorganic, organic, and biological chemistry, “Essentials” is a useful tool not only for teaching and learning but also as a quick reference, and thus will most probably become one of the standard text books for computational chemistry.

814 citations

Journal ArticleDOI
TL;DR: An in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods are covered.
Abstract: With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the ava...

375 citations