scispace - formally typeset
Search or ask a question
Author

Eric A. Nelson

Bio: Eric A. Nelson is an academic researcher from South Dakota State University. The author has contributed to research in topics: Porcine reproductive and respiratory syndrome virus & Virus. The author has an hindex of 50, co-authored 140 publications receiving 7748 citations. Previous affiliations of Eric A. Nelson include Empresa Brasileira de Pesquisa Agropecuária & Center for Infectious Disease Research and Policy.


Papers
More filters
Journal ArticleDOI
TL;DR: The characterization of an isolate of swine infertility and respiratory syndrome (SIRS) virus (ATCC VR-2332) is reported and it is indicated that this isolate is a fastidious, nonhemagglutinating, enveloped RNA virus.
Abstract: The characterization of an isolate of swine infertility and respiratory syndrome (SIRS) virus (ATCC VR-2332) is reported. A commercial cell line (CL262 1) was used for the propagation of the virus for all assays. Laboratory studies indicate that this isolate is a fastidious, nonhemagglutinating, enveloped RNA virus. Cesium chloride-purified virions visualized by electron microscopy were spherical particles with an average diameter of 62 nm (range: 48–83 nm) and a 25–30 nm core surrounded by an envelope. Virus replication was restricted to the cytoplasm, as demonstrated by immunofluorescence. The virus did not react serologically with antisera to several common porcine viruses or with antisera to known viruses in the alphavirus, rubivirus, pestivirus, and ungrouped lactic dehydrogenase virus genera of the Togaviridae. However, convalescent sow sera and rabbit hyperimmune sera neutralized the SIRS virus at titers of 1:256 and 1:512, respectively. The virus was stable at 4 and −70 C, but was labile at 37 and...

731 citations

Journal ArticleDOI
TL;DR: Monoclonal antibodies to two U.S. isolates of porcine reproductive and respiratory syndrome (PRRS) virus indicate that PRRS viruses contain both conserved and divergent epitopes on the 15-kDa viral protein.
Abstract: Monoclonal antibodies (MAbs) to two U.S. isolates of porcine reproductive and respiratory syndrome (PRRS) virus were prepared. Two MAbs specifically recognized a conserved epitope on the putative 15-kDa nucleocapsid protein of U.S. and European isolates of PRRS virus. Four other MAbs recognized epitopes on the 15-kDa protein of U.S. but not European isolates of PRRS virus. Collectively, this indicates that PRRS viruses contain both conserved and divergent epitopes on the 15-kDa viral protein.

390 citations

Journal ArticleDOI
15 Aug 2001-Virology
TL;DR: Results suggest that the 2b protein is virion associated and the principal product of ORF2, the major structural proteins of porcine reproductive and respiratory syndrome virus.

305 citations

Journal ArticleDOI
01 May 2014-Mbio
TL;DR: Deep RNA sequencing, phylogenetic analysis, and in vitro reassortment experiments demonstrate that animal ICV-like viruses are genetically distinct from human ICV and suggest that bovine influenza virus warrants classification as a new genus of influenza virus.
Abstract: We have recently reported the isolation of a novel virus, provisionally designated C/swine/Oklahoma/1334/2011 (C/OK), with 50% overall homology to human influenza C viruses (ICV), from a pig in Oklahoma. Deep RNA sequencing of C/OK virus found a matrix 1 (M1) protein expression strategy that differed from that of ICV. The novelty of C/OK virus prompted us to investigate whether C/OK virus could exist in a nonswine species. Significantly, we found that C/OK virus was widespread in U.S. bovine herds, as demonstrated by reverse transcription (RT)-PCR and serological assays. Genome sequencing of three bovine viruses isolated from two herds in different states further confirmed these findings. To determine whether swine/bovine C/OK viruses can undergo reassortment with human ICV, and to clarify the taxonomic status of C/OK, in vitro reassortment and serological typing by agar gel immunodiffusion (AGID) were conducted. In vitro reassortment using two human ICV and two swine and bovine C/OK viruses demonstrated that human ICV and C/OK viruses were unable to reassort and produce viable progeny. Antigenically, no cross-recognition of detergent split virions was observed in AGID between human and nonhuman viruses by using polyclonal antibodies that were reactive to cognate antigens. Taken together, these results demonstrate that C/OK virus is genetically and antigenically distinct from ICV. The classification of the new virus in a separate genus of the Orthomyxoviridae family is proposed. The finding of C/OK virus in swine and bovine indicates that this new virus may spread and establish infection in other mammals, including humans. IMPORTANCE Influenza C viruses (ICV) are common human pathogens, infecting most people during childhood and adolescence, and typically cause mild respiratory symptoms. While ICV have been isolated from both pigs and dogs, humans are thought to be the natural viral reservoir. Previously, we characterized an ICV-like virus isolated from pigs exhibiting symptoms of influenza virus-like illness. Here, we show molecular and serological data demonstrating widespread circulation of similar viruses in bovines. Deep RNA sequencing, phylogenetic analysis, and in vitro reassortment experiments demonstrate that animal ICV-like viruses are genetically distinct from human ICV. Antigenically, we show that ICV-like viruses are not recognized by ICV antibodies. En masse, these results suggest that bovine influenza virus warrants classification as a new genus of influenza virus. The finding of this novel virus that can infect multiple mammalian species warrants further research into its role in human health.

291 citations

Journal ArticleDOI
TL;DR: Direct evidence of persistent PRRSV infection was shown in experimentally infected pigs by isolation of virus from oropharyngeal samples for up to 157 days after challenge and field observations of long-term herd infection and transmission via purchase of clinically normal, butPRRSV infected, animals were explained.

259 citations


Cited by
More filters
01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
TL;DR: Impact of pesticides use in agriculture: their benefits and hazards, and the risks and benefits to human health.
Abstract: The term pesticide covers a wide range of compounds including insecticides, fungicides, herbicides, rodenticides, molluscicides, nematicides, plant growth regulators and others. Among these, organochlorine (OC) insecticides, used successfully in controlling a number of diseases, such as malaria and typhus, were banned or restricted after the 1960s in most of the technologically advanced countries. The introduction of other synthetic insecticides – organophosphate (OP) insecticides in the 1960s, carbamates in 1970s and pyrethroids in 1980s and the introduction of herbicides and fungicides in the 1970s–1980s contributed greatly to pest control and agricultural output. Ideally a pesticide must be lethal to the targeted pests, but not to non-target species, including man. Unfortunately, this is not the case, so the controversy of use and abuse of pesticides has surfaced. The rampant use of these chemicals, under the adage, “if little is good, a lot more will be better” has played havoc with human and other life forms. Production and usage of pesticides in India The production of pesticides started in India in 1952 with the establishment of a plant for the production of BHC near Calcutta, and India is now the second largest manufacturer of pesticides in Asia after China and ranks twelfth globally (Mathur, 1999). There has been a steady growth in the production of technical grade pesticides in India, from 5,000 metric tons in 1958 to 102,240 metric tons in 1998. In 1996–97 the demand for pesticides in terms of value was estimated to be around Rs. 22 billion (USD 0.5 billion), which is about 2% of the total world market. The pattern of pesticide usage in India is different from that for the world in general. As can be seen in Figure 1, in India 76% of the pesticide used is insecticide, as against 44% globally (Mathur, 1999). The use of herbicides and fungicides is correspondingly less heavy. The main use of pesticides in India is for cotton crops (45%), followed by paddy and wheat. Figure 1 Consumption pattern of pesticides. Benefits of pesticides The primary benefits are the consequences of the pesticides' effects – the direct gains expected from their use. For example the effect of killing caterpillars feeding on the crop brings the primary benefit of higher yields and better quality of cabbage. The three main effects result in 26 primary benefits ranging from protection of recreational turf to saved human lives. The secondary benefits are the less immediate or less obvious benefits that result from the primary benefits. They may be subtle, less intuitively obvious, or of longer term. It follows that for secondary benefits it is therefore more difficult to establish cause and effect, but nevertheless they can be powerful justifications for pesticide use. For example the higher cabbage yield might bring additional revenue that could be put towards children's education or medical care, leading to a healthier, better educated population. There are various secondary benefits identified, ranging from fitter people to conserved biodiversity. Improving productivity Tremendous benefits have been derived from the use of pesticides in forestry, public health and the domestic sphere – and, of course, in agriculture, a sector upon which the Indian economy is largely dependent. Food grain production, which stood at a mere 50 million tons in 1948–49, had increased almost fourfold to 198 million tons by the end of 1996–97 from an estimated 169 million hectares of permanently cropped land. This result has been achieved by the use of high-yield varieties of seeds, advanced irrigation technologies and agricultural chemicals (Employment Information: Indian Labour Statistics, 1994). Similarly outputs and productivity have increased dramatically in most countries, for example wheat yields in the United Kingdom, corn yields in the USA. Increases in productivity have been due to several factors including use of fertiliser, better varieties and use of machinery. Pesticides have been an integral part of the process by reducing losses from the weeds, diseases and insect pests that can markedly reduce the amount of harvestable produce. Warren (1998) also drew attention to the spectacular increases in crop yields in the United States in the twentieth century. Webster et al. (1999) stated that “considerable economic losses” would be suffered without pesticide use and quantified the significant increases in yield and economic margin that result from pesticide use. Moreover, in the environment most pesticides undergo photochemical transformation to produce metabolites which are relatively non-toxic to both human beings and the environment (Kole et al., 1999).

2,439 citations

Journal Article
TL;DR: The Q-Gene software application is a tool to cope with complex quantitative real-time PCR experiments at a high-throughput scale and considerably expedites and rationalizes the experimental setup, data analysis, and data management while ensuring highest reproducibility.
Abstract: Quantitative real-time PCR represents a highly sensitive and powerful technique for the quantitation of nucleic acids. It has a tremendous potential for the high-throughput analysis of gene expression in research and routine diagnostics. However, the major hurdle is not the practical performance of the experiments themselves but rather the efficient evaluation and the mathematical and statistical analysis of the enormous amount of data gained by this technology, as these functions are not included in the software provided by the manufacturers of the detection systems. In this work, we focus on the mathematical evaluation and analysis of the data generated by quantitative real-time PCR, the calculation of the final results, the propagation of experimental variation of the measured values to the final results, and the statistical analysis. We developed a Microsoft Excel-based software application coded in Visual Basic for Applications, called Q-Gene, which addresses these points. Q-Gene manages and expedites the planning, performance, and evaluation of quantitative real-time PCR experiments, as well as the mathematical and statistical analysis, storage, and graphical presentation of the data. The Q-Gene software application is a tool to cope with complex quantitative real-time PCR experiments at a high-throughput scale and considerably expedites and rationalizes the experimental setup, data analysis, and data management while ensuring highest reproducibility.

1,443 citations

Journal ArticleDOI
TL;DR: This review highlights the central role played by mucins in accommodating the resident commensal flora and limiting infectious disease, interplay between underlying innate and adaptive immunity and mucins, and the strategies used by successful mucosal pathogens to subvert or avoid the mucin barrier, with a particular focus on bacteria.

996 citations