scispace - formally typeset
Search or ask a question
Author

Eric A. Sobie

Bio: Eric A. Sobie is an academic researcher from Icahn School of Medicine at Mount Sinai. The author has contributed to research in topics: Ryanodine receptor & Medicine. The author has an hindex of 35, co-authored 123 publications receiving 4291 citations. Previous affiliations of Eric A. Sobie include Johns Hopkins University & University of Maryland, Baltimore.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that the increased spatial dispersion of the TTs and orphaned RyRs lead to the loss of local control and Ca(2+) instability in heart failure.
Abstract: Heart muscle is characterized by a regular array of proteins and structures that form a repeating functional unit identified as the sarcomere. This regular structure enables tight coupling between electrical activity and Ca2+ signaling. In heart failure, multiple cellular defects develop, including reduced contractility, altered Ca2+ signaling, and arrhythmias; however, the underlying causes of these defects are not well understood. Here, in ventricular myocytes from spontaneously hypertensive rats that develop heart failure, we identify fundamental changes in Ca2+ signaling that are related to restructuring of the spatial organization of the cells. Myocytes display both a reduced ability to trigger sarcoplasmic reticulum Ca2+ release and increased spatial dispersion of the transverse tubules (TTs). Remodeled TTs in cells from failing hearts no longer exist in the regularly organized structures found in normal heart cells, instead moving within the sarcomere away from the Z-line structures and leaving behind the sarcoplasmic reticulum Ca2+ release channels, the ryanodine receptors (RyRs). These orphaned RyRs appear to be responsible for the dyssynchronous Ca2+ sparks that have been linked to blunted contractility and, probably, Ca2+-dependent arrhythmias in diverse models of heart failure. We conclude that the increased spatial dispersion of the TTs and orphaned RyRs lead to the loss of local control and Ca2+ instability in heart failure.

427 citations

Journal ArticleDOI
TL;DR: This Teaching Resource provides lecture notes, slides, and a problem set that can assist in teaching concepts related to dynamical systems tools for the analysis of ordinary differential equation (ODE)–based models.
Abstract: This Teaching Resource provides lecture notes, slides, and a problem set that can assist in teaching concepts related to dynamical systems tools for the analysis of ordinary differential equation (ODE)-based models. The concepts are applied to familiar biological problems, and the material is appropriate for graduate students or advanced undergraduates. The lecture explains how equations describing biochemical signaling networks can be derived from diagrams that illustrate the reactions in graphical form. Because such reactions are most frequently described using systems of ODEs, the lecture discusses and illustrates the principles underlying the numerical solution of ODEs. Methods for determining the stability of steady-state solutions of one or two-dimensional ODE systems are covered and illustrated using standard graphical methods. The concept of a bifurcation, a condition at which a system's behavior changes qualitatively, is also introduced. A problem set is included that (i) requires students to implement an ODE model of biochemical reactions using MATLAB and (ii) allows them to explore dynamical systems concepts.

335 citations

Journal ArticleDOI
Alexandra B Keenan1, Sherry L. Jenkins1, Kathleen M. Jagodnik1, Simon Koplev1, Edward He1, Denis Torre1, Zichen Wang1, Anders B. Dohlman1, Moshe C. Silverstein1, Alexander Lachmann1, Maxim V. Kuleshov1, Avi Ma'ayan1, Vasileios Stathias2, Raymond Terryn2, Daniel J. Cooper2, Michele Forlin2, Amar Koleti2, Dusica Vidovic2, Caty Chung2, Stephan C. Schürer2, Jouzas Vasiliauskas3, Marcin Pilarczyk3, Behrouz Shamsaei3, Mehdi Fazel3, Yan Ren3, Wen Niu3, Nicholas A. Clark3, Shana White3, Naim Al Mahi3, Lixia Zhang3, Michal Kouril3, John F. Reichard3, Siva Sivaganesan3, Mario Medvedovic3, Jaroslaw Meller3, Rick J. Koch1, Marc R. Birtwistle1, Ravi Iyengar1, Eric A. Sobie1, Evren U. Azeloglu1, Julia A. Kaye4, Jeannette Osterloh4, Kelly Haston4, Jaslin Kalra4, Steve Finkbiener4, Jonathan Z. Li5, Pamela Milani5, Miriam Adam5, Renan Escalante-Chong5, Karen Sachs5, Alexander LeNail5, Divya Ramamoorthy5, Ernest Fraenkel5, Gavin Daigle6, Uzma Hussain6, Alyssa Coye6, Jeffrey D. Rothstein6, Dhruv Sareen7, Loren Ornelas7, Maria G. Banuelos7, Berhan Mandefro7, Ritchie Ho7, Clive N. Svendsen7, Ryan G. Lim8, Jennifer Stocksdale8, Malcolm Casale8, Terri G. Thompson8, Jie Wu8, Leslie M. Thompson8, Victoria Dardov7, Vidya Venkatraman7, Andrea Matlock7, Jennifer E. Van Eyk7, Jacob D. Jaffe9, Malvina Papanastasiou9, Aravind Subramanian9, Todd R. Golub, Sean D. Erickson10, Mohammad Fallahi-Sichani10, Marc Hafner10, Nathanael S. Gray10, Jia-Ren Lin10, Caitlin E. Mills10, Jeremy L. Muhlich10, Mario Niepel10, Caroline E. Shamu10, Elizabeth H. Williams10, David Wrobel10, Peter K. Sorger10, Laura M. Heiser11, Joe W. Gray11, James E. Korkola11, Gordon B. Mills12, Mark A. LaBarge13, Mark A. LaBarge14, Heidi S. Feiler11, Mark A. Dane11, Elmar Bucher11, Michel Nederlof11, Damir Sudar11, Sean M. Gross11, David Kilburn11, Rebecca Smith11, Kaylyn Devlin11, Ron Margolis, Leslie Derr, Albert Lee, Ajay Pillai 
TL;DR: The LINCS program focuses on cellular physiology shared among tissues and cell types relevant to an array of diseases, including cancer, heart disease, and neurodegenerative disorders.
Abstract: The Library of Integrated Network-Based Cellular Signatures (LINCS) is an NIH Common Fund program that catalogs how human cells globally respond to chemical, genetic, and disease perturbations. Resources generated by LINCS include experimental and computational methods, visualization tools, molecular and imaging data, and signatures. By assembling an integrated picture of the range of responses of human cells exposed to many perturbations, the LINCS program aims to better understand human disease and to advance the development of new therapies. Perturbations under study include drugs, genetic perturbations, tissue micro-environments, antibodies, and disease-causing mutations. Responses to perturbations are measured by transcript profiling, mass spectrometry, cell imaging, and biochemical methods, among other assays. The LINCS program focuses on cellular physiology shared among tissues and cell types relevant to an array of diseases, including cancer, heart disease, and neurodegenerative disorders. This Perspective describes LINCS technologies, datasets, tools, and approaches to data accessibility and reusability.

300 citations

Journal ArticleDOI
TL;DR: A new model of Ca(2+) spark behavior is presented that provides a "proof of principle" test of a new hypothesis for Ca( 2+) spark termination and reproduces critical features of Ca (2+) sparks observed experimentally.

299 citations

Journal ArticleDOI
TL;DR: A novel method for rapidly determining how changes in parameters affect outputs, and a side-by-side comparison of two similar models identified fundamental differences in model behavior, and revealed model predictions that were both consistent with, and inconsistent with, experimental data.

236 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
24 Sep 2010-Science
TL;DR: The Turing or reaction-diffusion (RD) model is one of the best-known theoretical models used to explain self-regulated pattern formation in the developing animal embryo as mentioned in this paper.
Abstract: The Turing, or reaction-diffusion (RD), model is one of the best-known theoretical models used to explain self-regulated pattern formation in the developing animal embryo. Although its real-world relevance was long debated, a number of compelling examples have gradually alleviated much of the skepticism surrounding the model. The RD model can generate a wide variety of spatial patterns, and mathematical studies have revealed the kinds of interactions required for each, giving this model the potential for application as an experimental working hypothesis in a wide variety of morphological phenomena. In this review, we describe the essence of this theory for experimental biologists unfamiliar with the model, using examples from experimental studies in which the RD model is effectively incorporated.

1,309 citations

Journal ArticleDOI
TL;DR: Current knowledge regarding the molecular identity of these transport pathways and their regulation by, e.g., membrane deformation, ionic strength, Ca(2+), protein kinases and phosphatases, cytoskeletal elements, GTP binding proteins, lipid mediators, and reactive oxygen species are reviewed.
Abstract: The ability to control cell volume is pivotal for cell function. Cell volume perturbation elicits a wide array of signaling events, leading to protective (e.g., cytoskeletal rearrangement) and adap...

1,239 citations

Journal ArticleDOI
TL;DR: This review discusses the structural and functional bases that generate the subcellular heterogeneity in cellular Ca(2+) levels at rest and under stimulation, and focuses on the molecular mechanisms that lead to the generation of cytoplasmic Ca( 2+) microdomains, focusing on their different sub cellular location, mechanism of generation, and functional role.
Abstract: Calcium ions are ubiquitous and versatile signaling molecules, capable of decoding a variety of extracellular stimuli (hormones, neurotransmitters, growth factors, etc.) into markedly different int...

1,104 citations