scispace - formally typeset
E

Eric A. Stach

Researcher at University of Pennsylvania

Publications -  612
Citations -  49518

Eric A. Stach is an academic researcher from University of Pennsylvania. The author has contributed to research in topics: Catalysis & Thin film. The author has an hindex of 81, co-authored 565 publications receiving 42589 citations. Previous affiliations of Eric A. Stach include Center for Functional Nanomaterials & Columbia University.

Papers
More filters
Journal ArticleDOI

Graphene-based composite materials

TL;DR: The bottom-up chemical approach of tuning the graphene sheet properties provides a path to a broad new class of graphene-based materials and their use in a variety of applications.
Journal ArticleDOI

Carbon-based Supercapacitors Produced by Activation of Graphene

TL;DR: This work synthesized a porous carbon with a Brunauer-Emmett-Teller surface area, a high electrical conductivity, and a low oxygen and hydrogen content that has high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes.
Journal ArticleDOI

Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition

TL;DR: It is shown that grain boundaries give a significant Raman 'D' peak, impede electrical transport, and induce prominent weak localization indicative of intervalley scattering in graphene, opening a route towards scalable fabrication of single-crystal graphene devices without grain boundaries.
Journal ArticleDOI

Control and Characterization of Individual Grains and Grain Boundaries in Graphene Grown by Chemical Vapor Deposition

TL;DR: In this paper, single-crystal graphene grains synthesized by ambient CVD on polycrystalline Cu are studied and individual boundaries between coalescing grains affect graphene's electronic properties.
Journal ArticleDOI

Control of Metal Nanocrystal Size Reveals Metal-Support Interface Role for Ceria Catalysts

TL;DR: Rate measurements are reported on samples in which the length of the ceria-metal interface was tailored by the use of monodisperse nickel, palladium, and platinum nanocrystals, and it is found that carbon monoxide oxidation inceria-based catalysts is greatly enhanced at the cia- metal interface sites for a range of group VIII metal catalysts.