scispace - formally typeset
Search or ask a question
Author

Eric D. Feigelson

Bio: Eric D. Feigelson is an academic researcher from Pennsylvania State University. The author has contributed to research in topics: Stars & Star formation. The author has an hindex of 88, co-authored 385 publications receiving 28417 citations. Previous affiliations of Eric D. Feigelson include University of New South Wales & Millennium Institute.


Papers
More filters
Journal ArticleDOI
20 Aug 2004
TL;DR: The Swift mission as discussed by the authors is a multi-wavelength observatory for gamma-ray burst (GRB) astronomy, which is a first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions.
Abstract: The Swift mission, scheduled for launch in 2004, is a multiwavelength observatory for gamma-ray burst (GRB) astronomy. It is a first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions. It will be far more powerful than any previous GRB mission, observing more than 100 bursts yr � 1 and performing detailed X-ray and UV/optical afterglow observations spanning timescales from 1 minute to several days after the burst. The objectives are to (1) determine the origin of GRBs, (2) classify GRBs and search for new types, (3) study the interaction of the ultrarelativistic outflows of GRBs with their surrounding medium, and (4) use GRBs to study the early universe out to z >10. The mission is being developed by a NASA-led international collaboration. It will carry three instruments: a newgeneration wide-field gamma-ray (15‐150 keV) detector that will detect bursts, calculate 1 0 ‐4 0 positions, and trigger autonomous spacecraft slews; a narrow-field X-ray telescope that will give 5 00 positions and perform spectroscopy in the 0.2‐10 keV band; and a narrow-field UV/optical telescope that will operate in the 170‐ 600 nm band and provide 0B3 positions and optical finding charts. Redshift determinations will be made for most bursts. In addition to the primary GRB science, the mission will perform a hard X-ray survey to a sensitivity of � 1m crab (� 2;10 � 11 ergs cm � 2 s � 1 in the 15‐150 keV band), more than an order of magnitude better than HEAO 1 A-4. A flexible data and operations system will allow rapid follow-up observations of all types of

3,753 citations

Journal ArticleDOI
TL;DR: A wide variety of least-squares linear regression procedures used in observational astronomy, particularly investigations of the cosmic distance scale, are presented and discussed in this article, where a formula for the intercept offset between two parallel data sets, which propagates slope errors from one regression to the other, and a generalization of the Working-Hotelling confidence bands to nonstandard least squares lines.
Abstract: A wide variety of least-squares linear regression procedures used in observational astronomy, particularly investigations of the cosmic distance scale, are presented and discussed. The classes of linear models considered are (1) unweighted regression lines, with bootstrap and jackknife resampling; (2) regression solutions when measurement error, in one or both variables, dominates the scatter; (3) methods to apply a calibration line to new data; (4) truncated regression models, which apply to flux-limited data sets; and (5) censored regression models, which apply when nondetections are present. For the calibration problem we develop two new procedures: a formula for the intercept offset between two parallel data sets, which propagates slope errors from one regression to the other; and a generalization of the Working-Hotelling confidence bands to nonstandard least-squares lines. They can provide improved error analysis for Faber-Jackson, Tully-Fisher, and similar cosmic distance scale relations.

1,059 citations

Journal ArticleDOI
TL;DR: In this paper, the authors obtained the first high-spatial-resolution (~1 arcsec), hard X-ray (0.5-7 keV) image of the central 40 pc (17 arcmin) of the Milky Way Galaxy and have discovered an Xray source, CXOGC J174540.
Abstract: We present results of our Chandra observation with the ACIS-I instrument centered on the position of Sagittarius A* (Sgr A*), the compact nonthermal radio source associated with the massive black hole (MBH) at the dynamical center of the Milky Way Galaxy. We have obtained the first high-spatial-resolution (~1 arcsec), hard X-ray (0.5-7 keV) image of the central 40 pc (17 arcmin) of the Galaxy and have discovered an X-ray source, CXOGC J174540.0-290027, coincident with the radio position of Sgr A* to within 0.35 arcsec, corresponding to a maximum projected distance of 16 light-days for an assumed distance to the center of the Galaxy of 8.0 kpc. We received 222 +/-17 (1 sigma) net counts from the source in 40.3 ks. Due to the low number of counts, the spectrum is well fit either by an absorbed power-law model with photon index Gamma = 2.7 (1.8-4.0) and column density NH = (9.8 [6.8-14.2]) x 10^22 cm^-2 (90% confidence interval) or by an absorbed optically thin thermal plasma model with kT = 1.9 (1.4-2.8) keV and NH = (11.5 [8.4-15.9]) x 10^22 cm^-2. Using the power-law model, the measured (absorbed) flux in the 2-10 keV band is (1.3 [1.1-1.7]) x 10^-13 ergs cm^-2 s^-1, and the absorption-corrected luminosity is (2.4 [1.8-5.4]) x 10^33 ergs s^-1. We also briefly discuss the complex structure of the X-ray emission from the Sgr A radio complex and along the Galactic plane and present morphological evidence that Sgr A* and Sgr A West lie within the hot plasma in the central cavity of Sgr A East.

837 citations

Journal ArticleDOI
TL;DR: In this article, the authors reported the first X-ray (0.5-7 keV) spectroscopic image with arcsecond resolution of the central 17 0 � 17 0 (40 pc � 40 pc) of the Milky Way.
Abstract: We report the results of the first-epoch observation with the ACIS-I instrument on the Chandra X-Ray Observatory of Sagittarius A* (Sgr A*), the compact radio source associated with the supermassive black hole (SMBH) at the dynamical center of the Milky Way. This observation produced the first X-ray (0.5- 7 keV) spectroscopic image with arcsecond resolution of the central 17 0 � 17 0 (40 pc � 40 pc) of the Galaxy. We report the discovery of an X-ray source, CXOGC J174540.0� 290027, coincident with Sgr A* within 0>27 � 0>18. The probability of a false match is estimated to be d0.5%. The spectrum is well fitted either by an absorbed power law with photon index � � 2:7 or by an absorbed optically thin thermal plasma with kT � 1:9 keV and column density NH � 1 � 10 23 cm � 2 . The observed flux in the 2-10 keV band is � 1:3 � 10 � 13 ergs cm � 2 s � 1 , and the absorption-corrected luminosity is � 2:4 � 10 33 ergs s � 1 . The X-ray emission at the position of Sgr A* is extended, with an intrinsic size of � 1>4 (FWHM), consistent with the Bondi accretion radius for a 2:6 � 10 6 Mblack hole. A compact component within the source flared by up to a factor of 3 over a period of � 1 hr at the start of the observation. The search for Kline emission from iron was inconclusive, yielding an upper limit on the equivalent width of 2.2 keV. Several potential stellar origins for the X-ray emission at Sgr A* are considered, but we conclude that the various properties of the source favor accretion onto the SMBH as the origin for the bulk of the emission. These data are inconsistent with '' standard '' advection-dominated accretion flow (ADAF) models or Bondi models, unless the accretion rate from stellar winds is much lower than anticipated. The central parsec of the Galaxy contains an � 1.3 keV plasma with electron density ne � 26� � 1=2 f cm � 3 , wheref is the filling factor. This plasma should supply � 10 � 6 Myr � 1 of material to the accretion flow at the Bondi radius, whereas measurements of linear polar- ization at 150 GHz and above limit the accretion rate near the event horizon to d10 � 8 Myr � 1 , assuming an equipartition magnetic field. Taken together, the X-ray and radio results imply that outflows or convection are playing a role in ADAF models and subequipartition magnetic fields in Bondi models, or else the X-ray emission must be generated predominantly via the synchrotron self-Compton (SSC) process. The measured extent of the source and the detection of short timescale variability are evidence that the emission from Sgr A* contains both thermal and nonthermal emission components at comparable levels. We also discuss the complex structure of the X-ray emission from the Sgr A radio complex and along the Galactic plane. Mor- phological evidence is presented that Sgr A* and the H ii region Sgr A West lie within the hot plasma in the central cavity of Sgr A East, which we interpret as a supernova remnant that may have passed through the position of the SMBH, leading to a period of increased activity that ended within the past � 300 yr. Similarly, we have discovered bright clumps of X-ray emission located on opposite sides of the Galactic plane, along a line passing through the central parsec of the Galaxy. The arrangement of these lobes suggests that Sgr A* may have experienced an earlier period of increased activity lasting several thousand years during which it expelled hot gas in a bipolar outflow oriented roughly perpendicular to the Galactic plane. Additionally, we present an analysis of stellar emission within the central parsec of the Galaxy. Subject headings: accretion, accretion disks — black hole physics — galaxies: active — Galaxy: center — X-rays: ISM — X-rays: stars

792 citations

Journal ArticleDOI
TL;DR: In the early stages of the evolution of low-mass stars, from protostars through the zero-age main sequence, magnetic reconnection flares are seen in the X-ray and radio bands.
Abstract: ▪ Abstract Observational studies of low-mass stars during their early stages of evolution, from protostars through the zero-age main sequence, show highly elevated levels of magnetic activity. This activity includes strong fields covering much of the stellar surface and powerful magnetic reconnection flares seen in the X-ray and radio bands. The flaring may occur in the stellar magnetosphere, at the star-disk interface, or above the circumstellar disk. Ionization from the resulting high-energy radiation may have important effects on the astrophysics of the disk, such as promotion of accretion and coupling to outflows, and on the surrounding interstellar medium. The bombardment of solids in the solar nebula by flare shocks and energetic particles may account for various properties of meteorites, such as chondrule melting and spallogenic isotopes. X-ray surveys also improve our samples of young stars, particularly in the weak-lined T Tauri phase after disks have dissipated, with implications for our underst...

744 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the present-day mass function and initial mass function in various components of the Galaxy (disk, spheroid, young, and globular clusters) and in conditions characteristic of early star formation is presented in this paper.
Abstract: We review recent determinations of the present-day mass function (PDMF) and initial mass function (IMF) in various components of the Galaxy—disk, spheroid, young, and globular clusters—and in conditions characteristic of early star formation. As a general feature, the IMF is found to depend weakly on the environment and to be well described by a power-law form forM , and a lognormal form below, except possibly for m!1 early star formation conditions. The disk IMF for single objects has a characteristic mass around M , m!0.08 c and a variance in logarithmic mass , whereas the IMF for multiple systems hasM , and . j!0.7 m!0.2 j!0.6 c The extension of the single MF into the brown dwarf regime is in good agreement with present estimates of L- and T-dwarf densities and yields a disk brown dwarf number density comparable to the stellar one, n!n! BD " pc !3 .T he IMF of young clusters is found to be consistent with the disk fi eld IMF, providing the same correction 0.1 for unresolved binaries, confirming the fact that young star clusters and disk field stars represent the same stellar population. Dynamical effects, yielding depletion of the lowest mass objects, are found to become consequential for ages!130 Myr. The spheroid IMF relies on much less robust grounds. The large metallicity spread in the local subdwarf photometric sample, in particular, remains puzzling. Recent observations suggest that there is a continuous kinematic shear between the thick-disk population, present in local samples, and the genuine spheroid one. This enables us to derive only an upper limit for the spheroid mass density and IMF. Within all the uncertainties, the latter is found to be similar to the one derived for globular clusters and is well represented also by a lognormal form with a characteristic mass slightly larger than for the disk, M , ,e xcluding as ignif icant population of m!0.2-0.3 c brown dwarfs in globular clusters and in the spheroid. The IMF characteristic of early star formation at large redshift remains undetermined, but different observational constraints suggest that it does not extend below!1M , .T hese results suggest a characteristic mass for star formation that decreases with time, from conditions prevailing at large redshift to conditions characteristic of the spheroid (or thick disk) to present-day conditions.Theseconclusions,however, remain speculative, given the large uncertainties in the spheroid and early star IMF determinations. These IMFs allow a reasonably robust determination of the Galactic present-day and initial stellar and brown dwarf contents. They also have important galactic implications beyond the Milky Way in yielding more accurate mass-to-light ratio determinations. The mass-to-light ratios obtained with the disk and the spheroid IMF yield values 1.8-1.4 times smaller than for a Salpeter IMF, respectively, in agreement with various recent dynamical determinations. This general IMF determination is examined in the context of star formation theory. None of the theories based on a Jeans-type mechanism, where fragmentation is due only to gravity, can fulfill all the observational constraints on star formation and predict a large number of substellar objects. On the other hand, recent numerical simulations of compressible turbulence, in particular in super-Alfvenic conditions, seem to reproduce both qualitatively and quantitatively the stellar and substellar IMF and thus provide an appealing theoretical foundation. In this picture, star formation is induced by the dissipation of large-scale turbulence to smaller scales through radiative MHD shocks, producing filamentary structures. These shocks produce local nonequilibrium structures with large density contrasts, which collapse eventually in gravitationally bound objects under the combined influence of turbulence and gravity. The concept of a single Jeans mass is replaced by a distribution of local Jeans masses, representative of the lognormal probability density function of the turbulent gas. Objects below the mean thermal Jeans mass still have a possibility to collapse, although with a decreasing probability.

8,218 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on the broad patterns in the star formation properties of galaxies along the Hubble sequence and their implications for understanding galaxy evolution and the physical processes that drive the evolution.
Abstract: Observations of star formation rates (SFRs) in galaxies provide vital clues to the physical nature of the Hubble sequence and are key probes of the evolutionary histories of galaxies. The focus of this review is on the broad patterns in the star formation properties of galaxies along the Hubble sequence and their implications for understanding galaxy evolution and the physical processes that drive the evolution. Star formation in the disks and nuclear regions of galaxies are reviewed separately, then discussed within a common interpretive framework. The diagnostic methods used to measure SFRs are also reviewed, and a self-consistent set of SFR calibrations is presented as an aid to workers in the field. One of the most recognizable features of galaxies along the Hubble sequence is the wide range in young stellar content and star formation activity. This variation in stellar content is part of the basis of the Hubble classification itself (Hubble 1926), and understanding its physical nature and origins is fundamental to understanding galaxy evolution in its broader context. This review deals with the global star formation properties of galaxies, the systematics of those properties along the Hubble sequence, and their implications for galactic evolution. I interpret “Hubble sequence” in this context very loosely, to encompass not only morphological type but other properties such as gas content, mass, bar structure, and dynamical environment, which can strongly influence the largescale star formation rate (SFR).

6,640 citations

Journal ArticleDOI

6,278 citations

Journal ArticleDOI
TL;DR: Convergence of Probability Measures as mentioned in this paper is a well-known convergence of probability measures. But it does not consider the relationship between probability measures and the probability distribution of probabilities.
Abstract: Convergence of Probability Measures. By P. Billingsley. Chichester, Sussex, Wiley, 1968. xii, 253 p. 9 1/4“. 117s.

5,689 citations

Journal ArticleDOI
TL;DR: Enrichment results demonstrate the importance of the novel XP molecular recognition and water scoring in separating active and inactive ligands and avoiding false positives.
Abstract: A novel scoring function to estimate protein-ligand binding affinities has been developed and implemented as the Glide 4.0 XP scoring function and docking protocol. In addition to unique water desolvation energy terms, protein-ligand structural motifs leading to enhanced binding affinity are included: (1) hydrophobic enclosure where groups of lipophilic ligand atoms are enclosed on opposite faces by lipophilic protein atoms, (2) neutral-neutral single or correlated hydrogen bonds in a hydrophobically enclosed environment, and (3) five categories of charged-charged hydrogen bonds. The XP scoring function and docking protocol have been developed to reproduce experimental binding affinities for a set of 198 complexes (RMSDs of 2.26 and 1.73 kcal/mol over all and well-docked ligands, respectively) and to yield quality enrichments for a set of fifteen screens of pharmaceutical importance. Enrichment results demonstrate the importance of the novel XP molecular recognition and water scoring in separating active and inactive ligands and avoiding false positives.

4,666 citations