scispace - formally typeset
Search or ask a question
Author

Eric F. Bell

Bio: Eric F. Bell is an academic researcher from University of Michigan. The author has contributed to research in topics: Galaxy & Star formation. The author has an hindex of 128, co-authored 631 publications receiving 72542 citations. Previous affiliations of Eric F. Bell include Durham University & University of Arizona.


Papers
More filters
Journal ArticleDOI
TL;DR: A series of improvements to the spectroscopic reductions are described, including better flat fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities.
Abstract: This paper describes the Seventh Data Release of the Sloan Digital Sky Survey (SDSS), marking the completion of the original goals of the SDSS and the end of the phase known as SDSS-II. It includes 11,663 deg^2 of imaging data, with most of the ~2000 deg^2 increment over the previous data release lying in regions of low Galactic latitude. The catalog contains five-band photometry for 357 million distinct objects. The survey also includes repeat photometry on a 120° long, 2°.5 wide stripe along the celestial equator in the Southern Galactic Cap, with some regions covered by as many as 90 individual imaging runs. We include a co-addition of the best of these data, going roughly 2 mag fainter than the main survey over 250 deg^2. The survey has completed spectroscopy over 9380 deg^2; the spectroscopy is now complete over a large contiguous area of the Northern Galactic Cap, closing the gap that was present in previous data releases. There are over 1.6 million spectra in total, including 930,000 galaxies, 120,000 quasars, and 460,000 stars. The data release includes improved stellar photometry at low Galactic latitude. The astrometry has all been recalibrated with the second version of the USNO CCD Astrograph Catalog, reducing the rms statistical errors at the bright end to 45 milliarcseconds per coordinate. We further quantify a systematic error in bright galaxy photometry due to poor sky determination; this problem is less severe than previously reported for the majority of galaxies. Finally, we describe a series of improvements to the spectroscopic reductions, including better flat fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities.

5,665 citations

Journal ArticleDOI
TL;DR: In this article, a large sample of galaxies from the 2MASS and the Sloan Digital Sky Survey (SDSS) was used to calculate galaxy luminosity and stellar mass functions in the local Universe.
Abstract: We use a large sample of galaxies from the Two Micron All Sky Survey(2MASS) and the Sloan Digital Sky Survey (SDSS) to calculate galaxy luminosity and stellar mass functions in the local Universe. We estimate corrections for passband shifting and galaxy evolution, as well as present-day stellar mass-to-light (M/L) ratios, by fitting the optical‐near-infrared galaxy data with simpl e models. Accounting for the 8% galaxy overdensity in the SDSS early data release region, the optical and near-infrared luminosity functions we construct for this sample agree with most recent literature optical and near-infrare d determinations within the uncertainties. We argue that 2MASS is biased against low surface brightness galaxies, and use SDSS plus our knowledge of stellar populations to estimate the ‘true’ K-band luminosity function. This has a steeper faint end slope and a slightly higher overall luminosity density than the direct estimate. Furthermore, assuming a universally-applicable stellar initial mass function (IMF), we find good agreement between the stellar ma ss function we derive from the 2MASS/SDSS data and that derived by Cole et al. (2001; MNRAS, 326, 255). The faint end slope slope for the stellar mass function is steeper than -1.1, reflecting the low stellar M/L ratios characteristic of lo w-mass galaxies. We estimate an upper limit to the stellar mass density in the local Universe ∗h = 2.0 ± 0.6 × 10 -3 by assuming an IMF as rich in low-mass stars as allowed by observations of galaxy dynamics in the local Universe. The stellar mass density may be lower than this value if a different IMF with fewer low-mass stars is assumed. Finally, we examine typedependence in the optical and near-infrared luminosity functions and the stellar mass function. In agreement with previous work, we find that the characteristic luminosity or mass of early-type galaxies is larger than for later types, and the faint end slope is steeper for later types than for earlier types. Accounting for typing uncertainties, we estimate that at least half, and perhaps as much as 3/4, of the stellar mass in the Universe is in early-type galaxies. As an aid to workers in the field, we present in an appendix the r elationship between model stellar M/L ratios and colors in SDSS/2MASS passbands, an updated discussion of near-infrared stellar M/L ratio estimates, and the volume-corrected distribution of g and K-band stellar M/L ratios as a function of stellar mass. Subject headings: galaxies: luminosity function, mass function ‐ galaxies: g eneral — galaxies: evolution — galaxies: stellar content

2,371 citations

Journal ArticleDOI
Norman A. Grogin1, Dale D. Kocevski2, Sandra M. Faber2, Henry C. Ferguson1, Anton M. Koekemoer1, Adam G. Riess3, Viviana Acquaviva4, David M. Alexander5, Omar Almaini6, Matthew L. N. Ashby7, Marco Barden8, Eric F. Bell9, Frédéric Bournaud10, Thomas M. Brown1, Karina Caputi11, Stefano Casertano1, Paolo Cassata12, Marco Castellano, Peter Challis7, Ranga-Ram Chary13, Edmond Cheung2, Michele Cirasuolo14, Christopher J. Conselice6, Asantha Cooray15, Darren J. Croton16, Emanuele Daddi10, Tomas Dahlen1, Romeel Davé17, Duilia F. de Mello18, Duilia F. de Mello19, Avishai Dekel20, Mark Dickinson, Timothy Dolch3, Jennifer L. Donley1, James Dunlop11, Aaron A. Dutton21, David Elbaz10, Giovanni G. Fazio7, Alexei V. Filippenko22, Steven L. Finkelstein23, Adriano Fontana, Jonathan P. Gardner19, Peter M. Garnavich24, Eric Gawiser4, Mauro Giavalisco12, Andrea Grazian, Yicheng Guo12, Nimish P. Hathi25, Boris Häussler6, Philip F. Hopkins22, Jiasheng Huang26, Kuang-Han Huang1, Kuang-Han Huang3, Saurabh Jha4, Jeyhan S. Kartaltepe, Robert P. Kirshner7, David C. Koo2, Kamson Lai2, Kyoung-Soo Lee27, Weidong Li22, Jennifer M. Lotz1, Ray A. Lucas1, Piero Madau2, Patrick J. McCarthy25, Elizabeth J. McGrath2, Daniel H. McIntosh28, Ross J. McLure11, Bahram Mobasher29, Leonidas A. Moustakas13, Mark Mozena2, Kirpal Nandra30, Jeffrey A. Newman31, Sami Niemi1, Kai G. Noeske1, Casey Papovich23, Laura Pentericci, Alexandra Pope12, Joel R. Primack2, Abhijith Rajan1, Swara Ravindranath32, Naveen A. Reddy29, Alvio Renzini, Hans-Walter Rix30, Aday R. Robaina33, Steven A. Rodney3, David J. Rosario30, Piero Rosati34, S. Salimbeni12, Claudia Scarlata35, Brian Siana29, Luc Simard36, Joseph Smidt15, Rachel S. Somerville4, Hyron Spinrad22, Amber Straughn19, Louis-Gregory Strolger37, Olivia Telford31, Harry I. Teplitz13, Jonathan R. Trump2, Arjen van der Wel30, Carolin Villforth1, Risa H. Wechsler38, Benjamin J. Weiner17, Tommy Wiklind39, Vivienne Wild11, Grant W. Wilson12, Stijn Wuyts30, Hao Jing Yan40, Min S. Yun12 
TL;DR: The Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) as discussed by the authors was designed to document the first third of galactic evolution, from z approx. 8 - 1.5 to test their accuracy as standard candles for cosmology.
Abstract: The Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) is designed to document the first third of galactic evolution, from z approx. 8 - 1.5. It will image > 250,000 distant galaxies using three separate cameras on the Hubble Space Tele8cope, from the mid-UV to near-IR, and will find and measure Type Ia supernovae beyond z > 1.5 to test their accuracy as standard candles for cosmology. Five premier multi-wavelength sky regions are selected, each with extensive ancillary data. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to a stellar mass of 10(exp 9) solar mass to z approx. 2, reaching the knee of the UV luminosity function of galaxies to z approx. 8. The survey covers approximately 800 square arc minutes and is divided into two parts. The CANDELS/Deep survey (5(sigma) point-source limit H =27.7mag) covers approx. 125 square arcminutes within GOODS-N and GOODS-S. The CANDELS/Wide survey includes GOODS and three additional fields (EGS, COSMOS, and UDS) and covers the full area to a 50(sigma) point-source limit of H ? or approx. = 27.0 mag. Together with the Hubble Ultradeep Fields, the strategy creates a three-tiered "wedding cake" approach that has proven efficient for extragalactic surveys. Data from the survey are non-proprietary and are useful for a wide variety of science investigations. In this paper, we describe the basic motivations for the survey, the CANDELS team science goals and the resulting observational requirements, the field selection and geometry, and the observing design.

2,088 citations

Journal ArticleDOI
Anton M. Koekemoer1, Sandra M. Faber2, Henry C. Ferguson1, Norman A. Grogin1, Dale D. Kocevski2, David C. Koo2, Kamson Lai2, Jennifer M. Lotz1, Ray A. Lucas1, Elizabeth J. McGrath2, Sara Ogaz1, Abhijith Rajan1, Adam G. Riess3, S. Rodney3, L. G. Strolger4, Stefano Casertano1, Marco Castellano, Tomas Dahlen1, Mark Dickinson, Timothy Dolch3, Adriano Fontana, Mauro Giavalisco5, Andrea Grazian, Yicheng Guo5, Nimish P. Hathi6, Kuang-Han Huang1, Kuang-Han Huang3, Arjen van der Wel7, Hao Jing Yan8, Viviana Acquaviva9, David M. Alexander10, Omar Almaini11, Matthew L. N. Ashby12, Marco Barden13, Eric F. Bell14, Frédéric Bournaud15, Thomas M. Brown1, Karina Caputi16, Paolo Cassata5, Peter Challis17, Ranga-Ram Chary18, Edmond Cheung2, Michele Cirasuolo16, Christopher J. Conselice11, Asantha Cooray19, Darren J. Croton20, Emanuele Daddi15, Romeel Davé21, Duilia F. de Mello22, Loic de Ravel16, Avishai Dekel23, Jennifer L. Donley1, James Dunlop16, Aaron A. Dutton24, David Elbaz25, Giovanni Fazio12, Alexei V. Filippenko26, Steven L. Finkelstein27, Chris Frazer19, Jonathan P. Gardner22, Peter M. Garnavich28, Eric Gawiser9, Ruth Gruetzbauch11, Will G. Hartley11, B. Haussler11, Jessica Herrington14, Philip F. Hopkins26, J.-S. Huang29, Saurabh Jha9, Andrew Johnson2, Jeyhan S. Kartaltepe3, Ali Ahmad Khostovan19, Robert P. Kirshner12, Caterina Lani11, Kyoung-Soo Lee30, Weidong Li26, Piero Madau2, Patrick J. McCarthy6, Daniel H. McIntosh31, Ross J. McLure, Conor McPartland2, Bahram Mobasher32, Heidi Moreira9, Alice Mortlock11, Leonidas A. Moustakas18, Mark Mozena2, Kirpal Nandra33, Jeffrey A. Newman34, Jennifer L. Nielsen31, Sami Niemi1, Kai G. Noeske1, Casey Papovich27, Laura Pentericci, Alexandra Pope, Joel R. Primack2, Swara Ravindranath35, Naveen A. Reddy, Alvio Renzini, Hans Walter Rix7, Aday R. Robaina, David J. Rosario2, Piero Rosati7, S. Salimbeni5, Claudia Scarlata18, Brian Siana18, Luc Simard36, Joseph Smidt19, D. Snyder2, Rachel S. Somerville1, Hyron Spinrad26, Amber N. Straughn22, Olivia Telford34, Harry I. Teplitz18, Jonathan R. Trump2, Carlos J. Vargas9, Carolin Villforth1, C. Wagner31, P. Wandro2, Risa H. Wechsler37, Benjamin J. Weiner21, Tommy Wiklind1, Vivienne Wild, Grant W. Wilson5, Stijn Wuyts12, Min S. Yun5 
TL;DR: In this paper, the authors describe the Hubble Space Telescope imaging data products and data reduction procedures for the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS).
Abstract: This paper describes the Hubble Space Telescope imaging data products and data reduction procedures for the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). This survey is designed to document the evolution of galaxies and black holes at z 1.5-8, and to study Type Ia supernovae at z > 1.5. Five premier multi-wavelength sky regions are selected, each with extensive multi-wavelength observations. The primary CANDELS data consist of imaging obtained in the Wide Field Camera 3 infrared channel (WFC3/IR) and the WFC3 ultraviolet/optical channel, along with the Advanced Camera for Surveys (ACS). The CANDELS/Deep survey covers ~125 arcmin2 within GOODS-N and GOODS-S, while the remainder consists of the CANDELS/Wide survey, achieving a total of ~800 arcmin2 across GOODS and three additional fields (Extended Groth Strip, COSMOS, and Ultra-Deep Survey). We summarize the observational aspects of the survey as motivated by the scientific goals and present a detailed description of the data reduction procedures and products from the survey. Our data reduction methods utilize the most up-to-date calibration files and image combination procedures. We have paid special attention to correcting a range of instrumental effects, including charge transfer efficiency degradation for ACS, removal of electronic bias-striping present in ACS data after Servicing Mission 4, and persistence effects and other artifacts in WFC3/IR. For each field, we release mosaics for individual epochs and eventual mosaics containing data from all epochs combined, to facilitate photometric variability studies and the deepest possible photometry. A more detailed overview of the science goals and observational design of the survey are presented in a companion paper.

2,011 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used a suite of simplified spectrophotometric spiral galaxy evolution models to argue that there are substantial variations in stellar mass-to-light (M/L) ratios within and among galaxies, amounting to factors of between 3 and 7 in the optical and 2 in the near-infrared.
Abstract: We have used a suite of simplified spectrophotometric spiral galaxy evolution models to argue that there are substantial variations in stellar mass-to-light (M/L) ratios within and among galaxies, amounting to factors of between 3 and 7 in the optical and factors of 2 in the near-infrared. Our models show a strong correlation between stellar M/L and the optical colors of the integrated stellar populations. Under the assumption of a universal spiral galaxy initial mass function (IMF), relative trends in model stellar M/L with color are robust to uncertainties in stellar population and galaxy evolution modeling, including the effects of modest bursts of star formation. Errors in the dust-reddening estimates do not strongly affect the final derived stellar masses of a stellar population. We examine the observed maximum disk stellar M/L ratios of a sample of spiral galaxies with accurate rotation curves and optical and near-infrared luminosity profiles. From these observed maximum disk M/L ratios we conclude that a Salpeter IMF has too many low-mass stars per unit luminosity but that an IMF similar to the Salpeter IMF at the high-mass end with less low-mass stars (giving stellar M/L ratios 30% lower than the Salpeter value) is consistent with the maximum disk constraints. Trends in observed maximum disk stellar M/L ratios with color provide a good match to the predicted model relation, suggesting that the spiral galaxy stellar IMF is universal and that a fraction of (particularly high surface brightness) spiral galaxies may be close to maximum disk. We apply the model trends in stellar M/L ratio with color to the Tully-Fisher (T-F) relation. We find that the stellar mass T-F relation is relatively steep, has modest scatter, and is independent of the passband and color used to derive the stellar masses, again lending support for a universal IMF. The difference in slope between the optical (especially blue) and near-infrared T-F relations is due to the combined effects of dust attenuation and stellar M/L variations with galaxy mass. Assuming the Hubble Space Telescope Key Project distance to the Ursa Major Cluster and neglecting the (uncertain) molecular gas fraction, we find that the baryonic T-F relation takes the form Mbaryon V3.5 (with random and systematic 1 σ slope errors of ~0.2 each) when using a bisector fit and rotation velocities derived from the flat part of the rotation curve. Since we have normalized the stellar M/L ratios to be as high as can possibly be allowed by maximum disk constraints, the slope of the baryonic T-F relation will be somewhat shallower than 3.5 if all disks are substantially submaximal.

1,948 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: The emcee algorithm as mentioned in this paper is a Python implementation of the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010).
Abstract: We introduce a stable, well tested Python implementation of the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010). The code is open source and has already been used in several published projects in the astrophysics literature. The algorithm behind emcee has several advantages over traditional MCMC sampling methods and it has excellent performance as measured by the autocorrelation time (or function calls per independent sample). One major advantage of the algorithm is that it requires hand-tuning of only 1 or 2 parameters compared to ~N2 for a traditional algorithm in an N-dimensional parameter space. In this document, we describe the algorithm and the details of our implementation. Exploiting the parallelism of the ensemble method, emcee permits any user to take advantage of multiple CPU cores without extra effort. The code is available online at http://dan.iel.fm/emcee under the GNU General Public License v2.

8,805 citations

Journal ArticleDOI
TL;DR: The second Gaia data release, Gaia DR2 as mentioned in this paper, is a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products.
Abstract: Context. We present the second Gaia data release, Gaia DR2, consisting of astrometry, photometry, radial velocities, and information on astrophysical parameters and variability, for sources brighter than magnitude 21. In addition epoch astrometry and photometry are provided for a modest sample of minor planets in the solar system. Aims: A summary of the contents of Gaia DR2 is presented, accompanied by a discussion on the differences with respect to Gaia DR1 and an overview of the main limitations which are still present in the survey. Recommendations are made on the responsible use of Gaia DR2 results. Methods: The raw data collected with the Gaia instruments during the first 22 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into this second data release, which represents a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products. Results: Gaia DR2 contains celestial positions and the apparent brightness in G for approximately 1.7 billion sources. For 1.3 billion of those sources, parallaxes and proper motions are in addition available. The sample of sources for which variability information is provided is expanded to 0.5 million stars. This data release contains four new elements: broad-band colour information in the form of the apparent brightness in the GBP (330-680 nm) and GRP (630-1050 nm) bands is available for 1.4 billion sources; median radial velocities for some 7 million sources are presented; for between 77 and 161 million sources estimates are provided of the stellar effective temperature, extinction, reddening, and radius and luminosity; and for a pre-selected list of 14 000 minor planets in the solar system epoch astrometry and photometry are presented. Finally, Gaia DR2 also represents a new materialisation of the celestial reference frame in the optical, the Gaia-CRF2, which is the first optical reference frame based solely on extragalactic sources. There are notable changes in the photometric system and the catalogue source list with respect to Gaia DR1, and we stress the need to consider the two data releases as independent. Conclusions: Gaia DR2 represents a major achievement for the Gaia mission, delivering on the long standing promise to provide parallaxes and proper motions for over 1 billion stars, and representing a first step in the availability of complementary radial velocity and source astrophysical information for a sample of stars in the Gaia survey which covers a very substantial fraction of the volume of our galaxy.

8,308 citations

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, C. Armitage-Caplan3, Monique Arnaud4  +324 moreInstitutions (70)
TL;DR: In this paper, the authors present the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra, which are extremely well described by the standard spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations.
Abstract: This paper presents the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra. We find that the Planck spectra at high multipoles (l ≳ 40) are extremely well described by the standard spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations. Within the context of this cosmology, the Planck data determine the cosmological parameters to high precision: the angular size of the sound horizon at recombination, the physical densities of baryons and cold dark matter, and the scalar spectral index are estimated to be θ∗ = (1.04147 ± 0.00062) × 10-2, Ωbh2 = 0.02205 ± 0.00028, Ωch2 = 0.1199 ± 0.0027, and ns = 0.9603 ± 0.0073, respectively(note that in this abstract we quote 68% errors on measured parameters and 95% upper limits on other parameters). For this cosmology, we find a low value of the Hubble constant, H0 = (67.3 ± 1.2) km s-1 Mpc-1, and a high value of the matter density parameter, Ωm = 0.315 ± 0.017. These values are in tension with recent direct measurements of H0 and the magnitude-redshift relation for Type Ia supernovae, but are in excellent agreement with geometrical constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent level precision using Planck CMB data alone. We use high-resolution CMB data together with Planck to provide greater control on extragalactic foreground components in an investigation of extensions to the six-parameter ΛCDM model. We present selected results from a large grid of cosmological models, using a range of additional astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured over the standard six-parameter ΛCDM cosmology. The deviation of the scalar spectral index from unity isinsensitive to the addition of tensor modes and to changes in the matter content of the Universe. We find an upper limit of r0.002< 0.11 on the tensor-to-scalar ratio. There is no evidence for additional neutrino-like relativistic particles beyond the three families of neutrinos in the standard model. Using BAO and CMB data, we find Neff = 3.30 ± 0.27 for the effective number of relativistic degrees of freedom, and an upper limit of 0.23 eV for the sum of neutrino masses. Our results are in excellent agreement with big bang nucleosynthesis and the standard value of Neff = 3.046. We find no evidence for dynamical dark energy; using BAO and CMB data, the dark energy equation of state parameter is constrained to be w = -1.13-0.10+0.13. We also use the Planck data to set limits on a possible variation of the fine-structure constant, dark matter annihilation and primordial magnetic fields. Despite the success of the six-parameter ΛCDM model in describing the Planck data at high multipoles, we note that this cosmology does not provide a good fit to the temperature power spectrum at low multipoles. The unusual shape of the spectrum in the multipole range 20 ≲ l ≲ 40 was seen previously in the WMAP data and is a real feature of the primordial CMB anisotropies. The poor fit to the spectrum at low multipoles is not of decisive significance, but is an “anomaly” in an otherwise self-consistent analysis of the Planck temperature data.

7,060 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the difference between the measured and predicted colors of a star, as derived from stellar parameters from the Sloan Extension for Galactic Understanding and Exploration Stellar Parameter Pipeline, and achieved uncertainties of 56, 34, 25, and 29 mmag in the colors u − g, g − r, r − i, and i − z, per star.
Abstract: We present measurements of dust reddening using the colors of stars with spectra in the Sloan Digital Sky Survey. We measure reddening as the difference between the measured and predicted colors of a star, as derived from stellar parameters from the Sloan Extension for Galactic Understanding and Exploration Stellar Parameter Pipeline. We achieve uncertainties of 56, 34, 25, and 29 mmag in the colors u – g, g – r, r – i, and i – z, per star, though the uncertainty varies depending on the stellar type and the magnitude of the star. The spectrum-based reddening measurements confirm our earlier "blue tip" reddening measurements, finding reddening coefficients different by –3%, 1%, 1%, and 2% in u – g, g – r, r – i, and i – z from those found by the blue tip method, after removing a 4% normalization difference. These results prefer an RV = 3.1 Fitzpatrick reddening law to O'Donnell or Cardelli et al. reddening laws. We provide a table of conversion coefficients from the Schlegel et al. (SFD) maps of E(B – V) to extinction in 88 bandpasses for four values of RV , using this reddening law and the 14% recalibration of SFD first reported by Schlafly et al. and confirmed in this work.

6,643 citations