scispace - formally typeset
Search or ask a question
Author

Eric G. Cavalcanti

Bio: Eric G. Cavalcanti is an academic researcher from Griffith University. The author has contributed to research in topics: Quantum entanglement & Quantum nonlocality. The author has an hindex of 27, co-authored 75 publications receiving 3223 citations. Previous affiliations of Eric G. Cavalcanti include University of Oxford & University of Sydney.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that the requirements for obtaining secure keys are much easier to meet than for DI-QKD, which opens promising experimental opportunities and clarifies the link between the security of this one-sided DI- QKD scenario and the demonstration of quantum steering, in analogy to the links between DI-ZKD and the violation of Bell inequalities.
Abstract: We analyze the security and feasibility of a protocol for quantum key distribution (QKD) in a context where only one of the two parties trusts his measurement apparatus. This scenario lies naturally between standard QKD, where both parties trust their measurement apparatuses, and device-independent QKD (DI-QKD), where neither do, and can be a natural assumption in some practical situations. We show that the requirements for obtaining secure keys are much easier to meet than for DI-QKD, which opens promising experimental opportunities. We clarify the link between the security of this one-sided DI-QKD scenario and the demonstration of quantum steering, in analogy to the link between DI-QKD and the violation of Bell inequalities.

610 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the field of the EPR gedanken experiment, from the original paper of Einstein, Podolsky, and Rosen, through to modern theoretical proposals of how to realize both the continuous-variable and discrete versions of EPR paradox.
Abstract: This Colloquium examines the field of the Einstein, Podolsky, and Rosen (EPR) gedanken experiment, from the original paper of Einstein, Podolsky, and Rosen, through to modern theoretical proposals of how to realize both the continuous-variable and discrete versions of the EPR paradox. The relationship with entanglement and Bell's theorem are analyzed, and the progress to date towards experimental confirmation of the EPR paradox is summarized, with a detailed treatment of the continuous-variable paradox in laser-based experiments. Practical techniques covered include continuous-wave parametric amplifier and optical fiber quantum soliton experiments. Current proposals for extending EPR experiments to massive-particle systems are discussed, including spin squeezing, atomic position entanglement, and quadrature entanglement in ultracold atoms. Finally, applications of this technology to quantum key distribution, quantum teleportation, and entanglement swapping are examined.

530 citations

Journal ArticleDOI
TL;DR: In this article, the authors formally link the concept of steering (a concept created by Schrodinger but only recently formalized by Wiseman, Jones and Doherty Phys. Rev. Lett. 98 140402 (2007)]) and the criteria for demonstrations of the EPR paradox introduced by Reid Phys.
Abstract: We formally link the concept of steering (a concept created by Schrodinger but only recently formalized by Wiseman, Jones and Doherty Phys. Rev. Lett. 98 140402 (2007)]) and the criteria for demonstrations of Einstein-Podolsky-Rosen (EPR) paradox introduced by Reid Phys. Rev. A 40 913 (1989)]. We develop a general theory of experimental EPR-steering criteria, derive a number of criteria applicable to discrete as well as continuous-variable observables, and study their efficacy in detecting that form of nonlocality in some classes of quantum states. We show that previous versions of EPR-type criteria can be rederived within this formalism, thus unifying these efforts from a modern quantum-information perspective and clarifying their conceptual and formal origin. The theory follows in close analogy with criteria for other forms of quantum nonlocality (Bell nonlocality and entanglement), and because it is a hybrid of those two, it may lead to insights into the relationship between the different forms of nonlocality and the criteria that are able to detect them.

480 citations

Journal ArticleDOI
TL;DR: In this article, the authors use entropic uncertainty relations to formulate inequalities that witness EPR steering correlations in diverse quantum systems and then use these inequalities to formulate symmetric EPR-steering inequalities using the mutual information.
Abstract: We use entropic uncertainty relations to formulate inequalities that witness Einstein-PodolskyRosen (EPR) steering correlations in diverse quantum systems. We then use these inequalities to formulate symmetric EPR-steering inequalities using the mutual information. We explore the diering natures of the correlations captured by one-way and symmetric steering inequalities, and examine the possibility of exclusive one-way steerability in two-qubit states. Furthermore, we show that steering inequalities can be extended to generalized positive operator valued measures (POVMs), and we also derive hybrid-steering inequalities between alternate degrees of freedom.

237 citations

Journal ArticleDOI
TL;DR: In this article, the authors derived arbitrarily loss-tolerant tests, enabling them to perform a detection-loophole-free demonstration of Einstein-Podolsky-Rosen steering with parties separated by a coiled 1-km-long optical fiber, with a total loss of 8.9 dB.
Abstract: Demonstrating nonclassical effects over longer and longer distances is essential for both quantum technology and fundamental science. The main challenge is the loss of photons during propagation, because considering only those cases where photons are detected opens a ‘‘detection loophole’’ in security whenever parties or devices are untrusted. Einstein-Podolsky-Rosen steering is equivalent to an entanglement-verification task in which one party (device) is untrusted. We derive arbitrarily loss-tolerant tests, enabling us to perform a detection-loophole-free demonstration of Einstein-Podolsky-Rosen steering with parties separated by a coiled 1-km-long optical fiber, with a total loss of 8.9 dB (87%).

160 citations


Cited by
More filters
01 Jan 1973
TL;DR: In this paper, the authors present a reformulation of quantum theory in a form believed suitable for application to general relativity, from which the conventional interpretation of quantum mechanics can be deduced.
Abstract: The task of quantizing general relativity raises serious questions about the meaning of the present formulation and interpretation of quantum mechanics when applied to so fundamental a structure as the space-time geometry itself. This paper seeks to clarify the foundations of quantum mechanics. It presents a reformulation of quantum theory in a form believed suitable for application to general relativity. The aim is not to deny or contradict the conventional formulation of quantum theory, which has demonstrated its usefulness in an overwhelming variety of problems, but rather to supply a new, more general and complete formulation, from which the conventional interpretation can be deduced. The relationship of this new formulation to the older formulation is therefore that of a metatheory to a theory, that is, it is an underlying theory in which the nature and consistency, as well as the realm of applicability, of the older theory can be investigated and clarified.

2,091 citations

Journal ArticleDOI
19 Oct 2018-Science
TL;DR: What it will take to achieve this so-called quantum internet is reviewed and different stages of development that each correspond to increasingly powerful applications are defined, including a full-blown quantum internet with functional quantum computers as nodes connected through quantum communication channels.
Abstract: The internet-a vast network that enables simultaneous long-range classical communication-has had a revolutionary impact on our world. The vision of a quantum internet is to fundamentally enhance internet technology by enabling quantum communication between any two points on Earth. Such a quantum internet may operate in parallel to the internet that we have today and connect quantum processors in order to achieve capabilities that are provably impossible by using only classical means. Here, we propose stages of development toward a full-blown quantum internet and highlight experimental and theoretical progress needed to attain them.

1,397 citations

Journal ArticleDOI
TL;DR: In this article, the authors review and illustrate the theory and experiments with atomic ensembles that have demonstrated many-particle entanglement and quantum-enhanced metrology.
Abstract: Quantum technologies exploit entanglement to revolutionize computing, measurements, and communications. This has stimulated the research in different areas of physics to engineer and manipulate fragile many-particle entangled states. Progress has been particularly rapid for atoms. Thanks to the large and tunable nonlinearities and the well-developed techniques for trapping, controlling, and counting, many groundbreaking experiments have demonstrated the generation of entangled states of trapped ions, cold, and ultracold gases of neutral atoms. Moreover, atoms can strongly couple to external forces and fields, which makes them ideal for ultraprecise sensing and time keeping. All these factors call for generating nonclassical atomic states designed for phase estimation in atomic clocks and atom interferometers, exploiting many-body entanglement to increase the sensitivity of precision measurements. The goal of this article is to review and illustrate the theory and the experiments with atomic ensembles that have demonstrated many-particle entanglement and quantum-enhanced metrology.

831 citations

Journal ArticleDOI
TL;DR: This review gives both sides of the story, with the current best theory of quantum security, and an extensive survey of what makes quantum cryptosystem safe in practice.
Abstract: Some years ago quantum hacking became popular: devices implementing the unbreakable quantum cryptography were shown to have imperfections which could be exploited by attackers. Security has been thoroughly enhanced, as a consequence of both theoretical and experimental advances. This review gives both sides of the story, with the current best theory of quantum security, and an extensive survey of what makes quantum cryptosystem safe in practice.

761 citations

Journal ArticleDOI
06 Aug 2010-Science
TL;DR: This demonstration of entanglement in an angular basis establishes that angles are genuine quantum observables and can therefore be considered a resource for quantum information processing, capable of secure, high-dimension, key distribution.
Abstract: Entanglement of the properties of two separated particles constitutes a fundamental signature of quantum mechanics and is a key resource for quantum information science. We demonstrate strong Einstein, Podolsky, and Rosen correlations between the angular position and orbital angular momentum of two photons created by the nonlinear optical process of spontaneous parametric down-conversion. The discrete nature of orbital angular momentum and the continuous but periodic nature of angular position give rise to a special sort of entanglement between these two variables. The resulting correlations are found to be an order of magnitude stronger than those allowed by the uncertainty principle for independent (nonentangled) particles. Our results suggest that angular position and orbital angular momentum may find important applications in quantum information science.

538 citations