scispace - formally typeset
Search or ask a question
Author

Eric J. Basham

Bio: Eric J. Basham is an academic researcher from University of California, Santa Cruz. The author has contributed to research in topics: Transistor & Electronic circuit. The author has an hindex of 7, co-authored 19 publications receiving 342 citations. Previous affiliations of Eric J. Basham include San Jose State University & University of California.

Papers
More filters
Journal ArticleDOI
TL;DR: An analytical express for the optimal frequency of a coil in terms of the design parameters is presented and it is shown to be useful in optimizing coil Index performance.
Abstract: This paper describes the ac power dissipation of coils as well as their self-capacitance, self-resonant frequency, and quality factor Q. In the past, self-resonant frequency was rarely calculated during design because of the lack of suitable closed-form design equations. However, coils are widely used in biomedical applications as inductive links for both power and data, and the power transfer capacity and the data rate of inductive links are determined by the operating frequency of the coils. The maximum operating frequency is limited by the self-resonant frequency of the coil. We present here an analytical express for the optimal frequency of a coil in terms of the design parameters. By varying the design parameters, we can move the optimal frequency close to the operating frequency, thereby boosting the efficiency of the inductive link. We have verified the derivation experimentally and shown it to be useful in optimizing coil Index performance.

182 citations

Journal ArticleDOI
TL;DR: Circuit modeling and simulation demonstrate that the proposed circuit to deliver asymmetric current pulses for generation of the magnetic field is effective for stimulating neural tissue with electric-field gradients generated by time-varying magnetic fields.
Abstract: Magnetic stimulation of neural tissue is an attractive technology because neural excitation may be affected without requiring implantation of electrodes. Pulsed discharge circuits are typically implemented for clinical magnetic stimulation systems. However, pulsed discharge systems can confound in-vitro experimentation. As an alternative to pulsed discharge circuits, we present a circuit to deliver asymmetric current pulses for generation of the magnetic field. We scaled the system down by using ferrite cores for the excitation coil. The scaled system allows observation using electrophysiological techniques and preparations not commonly used for investigation of magnetic stimulation. The design was refined using a comprehensive set of design equations. Circuit modeling and simulation demonstrate that the proposed system is effective for stimulating neural tissue with electric-field gradients generated by time-varying magnetic fields. System performance is verified through electrical test.

37 citations

Proceedings ArticleDOI
01 Dec 2008
TL;DR: In this paper, the design and analysis of a power telemetry system with multiple output voltages is presented, which includes a Class E power transmitter, cascaded resonant tank, diode rectifiers, reverse data telemetry and regulators.
Abstract: The design and analysis of a power telemetry system with multiple output voltages is presented in this paper. The system includes a Class E power transmitter, cascaded resonant tank, diode rectifiers, reverse data telemetry and regulators. The power loss associated with voltage conversion is minimized by using a proposed cascaded resonant tank. Reverse telemetry senses the power level fluctuation due to the coil movement and reliably provides minimally required power for the implant. The power telemetry system provides 5 voltage levels (tunable up to plusmn 12 Vplusmn2.5 V and ground), each supported by a dedicated integrated regulator except the ground. The maximum deliverable power is in excess of 100 mW when power coils are separated by 1 cm.

33 citations

Proceedings ArticleDOI
01 Jan 2004
TL;DR: The development of a test chip that will be used to evaluate a hermetic and biocompatible package for the driving CMOS circuitry of a retinal prosthesis is described, allowing a more thorough evaluation of circuit behavior during the testing.
Abstract: The development of a test chip that will be used to evaluate a hermetic and biocompatible package for the driving CMOS circuitry of a retinal prosthesis is described. The package design is estimated to be about 2 /spl times/ 2 /spl times/ 0.3 mm/sup 3/ and will be formed by conformal layers of parylene and a metal (e.g. titanium) as inner and outer protections, respectively. The test chip has been specifically designed for evaluation of the packaging technology. It consists of many blocks of analog and digital components as well as relative humidity and temperature sensors. The test chip has more probe points than a typical chip, allowing a more thorough evaluation of circuit behavior during the testing. This chip will first be coated in a layer of parylene C and soaked in heated isotonic saline for an extended period of time. Every block in the chip will then be tested for functionality using the surface probe points. The next step is to coat the surface of another test chip with parylene and a metal and repeat these soak tests. The results will then be analyzed and mean time-to-failure for the different samples will then be computed. Using the accelerated testing paradigm, these results will then be extrapolated to mean time-to-failure in the operating intraocular environment. Parylene test structures have already undergone an accelerated lifetime test and results have been analyzed.

22 citations

Book ChapterDOI
01 Jan 2009
TL;DR: This chapter presents an in vitro experimental system using a systematic design methodology to demystify magnetic stimulation systems and shows how to use a circuit to deliver asymmetric current pulses to generate the magnetic field.
Abstract: Magnetic stimulation of neural tissue is an attractive technology because neural excitation may be affected without the implantation of electrodes. This chapter provides a brief overview of the technology and relevant literature. While extensive magnetic stimulation modeling and clinical experimentation work has been presented, considerably less quantitative in vitro work has been performed. In vitro experiments are critical for characterizing the site of action, the structures stimulated, and the long-term tissue histological effects. In vitro systems may also facilitate the development of novel magnetic stimulation approaches. To demystify magnetic stimulation systems, this chapter presents an in vitro experimental system using a systematic design methodology. The modeling methods are designed to aid experimentation. Circuit schematics, test rigs, and supplier information are given to support practical implementation of this design methodology. Example neural preparations and their modeling and use are also covered. Finally, as an alternative to pulsed discharge circuits for magnetic stimulation, this chapter shows how to use a circuit to deliver asymmetric current pulses to generate the magnetic field.

21 citations


Cited by
More filters
Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

01 Nov 2000
TL;DR: In this paper, the authors compared the power density characteristics of ultracapacitors and batteries with respect to the same charge/discharge efficiency, and showed that the battery can achieve energy densities of 10 Wh/kg or higher with a power density of 1.2 kW/kg.
Abstract: The science and technology of ultracapacitors are reviewed for a number of electrode materials, including carbon, mixed metal oxides, and conducting polymers. More work has been done using microporous carbons than with the other materials and most of the commercially available devices use carbon electrodes and an organic electrolytes. The energy density of these devices is 3¯5 Wh/kg with a power density of 300¯500 W/kg for high efficiency (90¯95%) charge/discharges. Projections of future developments using carbon indicate that energy densities of 10 Wh/kg or higher are likely with power densities of 1¯2 kW/kg. A key problem in the fabrication of these advanced devices is the bonding of the thin electrodes to a current collector such the contact resistance is less than 0.1 cm2. Special attention is given in the paper to comparing the power density characteristics of ultracapacitors and batteries. The comparisons should be made at the same charge/discharge efficiency.

2,437 citations

Journal ArticleDOI
TL;DR: This work has analyzed the four-coil energy transfer systems and outlined the effect of design parameters on power-transfer efficiency, and a proof-of-concept prototype system is implemented and confirms the validity of the proposed analysis and design techniques.
Abstract: Resonance-based wireless power delivery is an efficient technique to transfer power over a relatively long distance. This technique typically uses four coils as opposed to two coils used in conventional inductive links. In the four-coil system, the adverse effects of a low coupling coefficient between primary and secondary coils are compensated by using high-quality (Q) factor coils, and the efficiency of the system is improved. Unlike its two-coil counterpart, the efficiency profile of the power transfer is not a monotonically decreasing function of the operating distance and is less sensitive to changes in the distance between the primary and secondary coils. A four-coil energy transfer system can be optimized to provide maximum efficiency at a given operating distance. We have analyzed the four-coil energy transfer systems and outlined the effect of design parameters on power-transfer efficiency. Design steps to obtain the efficient power-transfer system are presented and a design example is provided. A proof-of-concept prototype system is implemented and confirms the validity of the proposed analysis and design techniques. In the prototype system, for a power-link frequency of 700 kHz and a coil distance range of 10 to 20 mm, using a 22-mm diameter implantable coil resonance-based system shows a power-transfer efficiency of more than 80% with an enhanced operating range compared to ~40% efficiency achieved by a conventional two-coil system.

894 citations

Posted Content
TL;DR: An exhaustive review of the research conducted in neuromorphic computing since the inception of the term is provided to motivate further work by illuminating gaps in the field where new research is needed.
Abstract: Neuromorphic computing has come to refer to a variety of brain-inspired computers, devices, and models that contrast the pervasive von Neumann computer architecture This biologically inspired approach has created highly connected synthetic neurons and synapses that can be used to model neuroscience theories as well as solve challenging machine learning problems The promise of the technology is to create a brain-like ability to learn and adapt, but the technical challenges are significant, starting with an accurate neuroscience model of how the brain works, to finding materials and engineering breakthroughs to build devices to support these models, to creating a programming framework so the systems can learn, to creating applications with brain-like capabilities In this work, we provide a comprehensive survey of the research and motivations for neuromorphic computing over its history We begin with a 35-year review of the motivations and drivers of neuromorphic computing, then look at the major research areas of the field, which we define as neuro-inspired models, algorithms and learning approaches, hardware and devices, supporting systems, and finally applications We conclude with a broad discussion on the major research topics that need to be addressed in the coming years to see the promise of neuromorphic computing fulfilled The goals of this work are to provide an exhaustive review of the research conducted in neuromorphic computing since the inception of the term, and to motivate further work by illuminating gaps in the field where new research is needed

570 citations

Journal ArticleDOI
TL;DR: It is shown that despite achieving high PTE at larger coil separations, the 4-coil inductive links fail to achieve a high PDL, and an iterative design methodology is devised that provides the optimal coil geometries in a 3-coils inductive power transfer link.
Abstract: Inductive power transmission is widely used to energize implantable microelectronic devices (IMDs), recharge batteries, and energy harvesters. Power transfer efficiency (PTE) and power delivered to the load (PDL) are two key parameters in wireless links, which affect the energy source specifications, heat dissipation, power transmission range, and interference with other devices. To improve the PTE, a 4-coil inductive link has been recently proposed. Through a comprehensive circuit-based analysis that can guide a design and optimization scheme, we have shown that despite achieving high PTE at larger coil separations, the 4-coil inductive links fail to achieve a high PDL. Instead, we have proposed a 3-coil inductive power transfer link with comparable PTE over its 4-coil counterpart at large coupling distances, which can also achieve high PDL. We have also devised an iterative design methodology that provides the optimal coil geometries in a 3-coil inductive power transfer link. Design examples of 2-, 3-, and 4-coil inductive links have been presented, and optimized for a 13.56-MHz carrier frequency and 12-cm coupling distance, showing PTEs of 15%, 37%, and 35%, respectively. At this distance, the PDL of the proposed 3-coil inductive link is 1.5 and 59 times higher than its equivalent 2- and 4-coil links, respectively. For short coupling distances, however, 2-coil links remain the optimal choice when a high PDL is required, while 4-coil links are preferred when the driver has large output resistance or small power is needed. These results have been verified through simulations and measurements.

537 citations