scispace - formally typeset
Search or ask a question
Author

Eric MacDonald

Bio: Eric MacDonald is an academic researcher from University of Texas at El Paso. The author has contributed to research in topics: Electronics & Materials science. The author has an hindex of 34, co-authored 158 publications receiving 4706 citations. Previous affiliations of Eric MacDonald include University of Texas System & United States Department of the Navy.


Papers
More filters
Journal ArticleDOI
30 Sep 2016-Science
TL;DR: Multiprocess 3D printing is a nascent area of research in which basic 3Dprinting is augmented to fabricate structures with multifunctionality, which will lead to local manufacturing with customized 3D spatial control of material, geometry, and placement of subcomponents.
Abstract: BACKGROUND Three-dimensional (3D) printing, known more formally as additive manufacturing, has become the focus of media and public attention in recent years as the decades-old technology has at last approached the performance necessary for direct production of end-use devices. The most popular forms of standard 3D printing include vat photopolymerization, powder bed fusion, material extrusion, sheet lamination, directed energy deposition, material jetting, and binder jetting, each creating parts layer by layer and offering different options in terms of cost, feature detail, and materials. Whereas traditional manufacturing technologies, such as casting, forging, machining, and injection molding, are well suited for mass production of identical commodity items, 3D printing allows for the creation of complex geometric shapes that can be mass-customized, because no die or mold is required and design concepts are translated into products through direct digital manufacturing. Furthermore, the additively layered approach enables the merging of multiple components into a single piece, which removes the requirement for subsequent assembly operations. Recently, the patents for the original 3D printing processes have begun to expire, which is resulting in a burgeoning number of low-cost desktop systems that provide increased accessibility to society at large. Industry has recognized the manufacturing advantages of these technologies and is investing in production systems to make complex components for jet engines, customized bodies for cars, and even pharmaceuticals. Although standard 3D printing technologies have advanced so that it is now possible to print in a wide range of materials including metals, ceramics, and polymers, the resulting structures are generally limited to a single material, or, at best, a limited number of compatible materials. ADVANCES For the technology to become more widely adopted in mainstream manufacturing, 3D printing must provide end-use products by fabricating more than just simple structures with sufficient mechanical strength to retain shape. Recently, research has resulted in the capability to use new materials with commercial 3D printers, and customized printers have been enhanced with complementary traditional manufacturing processes, an approach known as multiprocess or hybrid 3D printing. Collectively, these advancements are leading to fabrications that are not only geometrically complex, but functionally complex as well. By introducing the robotic placement of components, micromachining for intricate detail, embedding of wires, and dispensing of functional inks, complex structures can be constructed with additional electronic, electromagnetic, optical, thermodynamic, chemical, and electromechanical content. OUTLOOK Multiprocess 3D printing is a nascent area of research in which basic 3D printing is augmented to fabricate structures with multifunctionality. Progress will lead to local manufacturing with customized 3D spatial control of material, geometry, and placement of subcomponents. This next generation of printers will allow for the fabrication of arbitrarily shaped end-use devices, leading to direct and distributed manufacturing of products ranging from human organs to satellites. The ramifications are substantial, given that 3D printing will enable the fabrication of customer-specific products locally and on demand, improving personalization and reducing shipping costs and delays. Examples could include replacement components for grain-milling equipment in a remote village in the developing world, biomedical devices created specifically for a patient in a hospital before surgery, and satellite components printed in orbit, thus avoiding the delays and costs associated with launch operations. The automotive, aerospace, defense, pharmaceutical, biomedical, and consumer industries, among others, will benefit from the new design and manufacturing freedom made possible by multiprocess 3D printing.

612 citations

Journal ArticleDOI
TL;DR: In this article, the authors compare and contrast stereolithography used for 3D-printed electronics with the FDM-based system through experimental results and demonstrates an automated FDMbased process for producing features not achievable with FDM alone.
Abstract: While NASA explores the power of 3D printing in the development of the next generation space exploration vehicle, a CubeSat Trailblazer was launched in November 2013 that integrated 3D-printed structures with embedded electronics. Space provides a harsh environment necessary to demonstrate the durability of 3D-printed devices with radiation, extreme thermal cycling, and low pressure—all assaulting the structure at the atomic to macroscales. Consequently, devices that are operational in orbit can be relied upon in many terrestrial environments—including many defense and biomedical applications. The 3D-printed CubeSat module (a subsystem occupying approximately 10 % of the total volume offered by the 10 × 10 × 10-cm CubeSat enclosure) has a substrate that fits specifically into the available volume—exploiting 3D printing to provide volumetric efficiency. Based on the best fabrication technology at the time for 3D-printed electronics, stereolithography (SL), a vat photopolymerization technology, was used to fabricate the dielectric structure, while conductive inks were dispensed in channels to provide the electrical interconnect between components. In spite of the structure passing qualification—including temperature cycling, shock and vibration, and outgas testing—the photocurable materials used in SL do not provide the level of durability required for long-term functionality. Moreover, the conductive inks with low-temperature curing capabilities as required by the SL substrate material are widely known to provide suboptimal performance in terms of conductivity. To address these challenges in future 3D-printed electronics, a next generation machine is under development and being referred to as the multi3D system, which denotes the use of multiple technologies to produce 3D, multi-material, multifunctional devices. Based on an extrusion process necessary to replace photocurable polymers with thermoplastics, a material extrusion system based on fused deposition modeling (FDM) technology has been developed that integrates other technologies to compensate for FDM’s deficiencies in surface finish, minimum dimensional feature size, and porosity. Additionally, to minimize the use of conductive inks, a novel thermal embedding technology submerges copper wires into the thermoplastic dielectric structures during FDM process interruptions—providing high performance, robust interconnect, and ground planes—and serendipitously improving the mechanical properties of the structure. This paper compares and contrasts stereolithography used for 3D-printed electronics with the FDM-based system through experimental results and demonstrates an automated FDM-based process for producing features not achievable with FDM alone. In addition to the possibility of using direct write for electronic circuitry, the novel fabrication uses thermoplastics and copper wires that offer a substantial improvement in terms of performance and durability of 3D-printed electronics.

511 citations

Journal ArticleDOI
TL;DR: The development process used to design a novelty six-sided gaming die is described, which includes a microprocessor and accelerometer, which together detect motion and upon halting, identify the top surface through gravity and illuminate light-emitting diodes for a striking effect.
Abstract: In new product development, time to market (TTM) is critical for the success and profitability of next generation products. When these products include sophisticated electronics encased in 3D packaging with complex geometries and intricate detail, TTM can be compromised - resulting in lost opportunity. The use of advanced 3D printing technology enhanced with component placement and electrical interconnect deposition can provide electronic prototypes that now can be rapidly fabricated in comparable time frames as traditional 2D bread-boarded prototypes; however, these 3D prototypes include the advantage of being embedded within more appropriate shapes in order to authentically prototype products earlier in the development cycle. The fabrication freedom offered by 3D printing techniques, such as stereolithography and fused deposition modeling have recently been explored in the context of 3D electronics integration - referred to as 3D structural electronics or 3D printed electronics. Enhanced 3D printing may eventually be employed to manufacture end-use parts and thus offer unit-level customization with local manufacturing; however, until the materials and dimensional accuracies improve (an eventuality), 3D printing technologies can be employed to reduce development times by providing advanced geometrically appropriate electronic prototypes. This paper describes the development process used to design a novelty six-sided gaming die. The die includes a microprocessor and accelerometer, which together detect motion and upon halting, identify the top surface through gravity and illuminate light-emitting diodes for a striking effect. By applying 3D printing of structural electronics to expedite prototyping, the development cycle was reduced from weeks to hours.

500 citations

Journal ArticleDOI
TL;DR: In this article, a hybrid manufacturing system that integrates stereolithography (SL) and direct print (DP) technologies to fabricate three-dimensional (3D) structures with embedded electronic circuits is presented.
Abstract: Purpose – The purpose of this paper is to present a hybrid manufacturing system that integrates stereolithography (SL) and direct print (DP) technologies to fabricate three‐dimensional (3D) structures with embedded electronic circuits. A detailed process was developed that enables fabrication of monolithic 3D packages with electronics without removal from the hybrid SL/DP machine during the process. Successful devices are demonstrated consisting of simple 555 timer circuits designed and fabricated in 2D (single layer of routing) and 3D (multiple layers of routing and component placement).Design/methodology/approach – A hybrid SL/DP system was designed and developed using a 3D Systems SL 250/50 machine and an nScrypt micro‐dispensing pump integrated within the SL machine through orthogonally‐aligned linear translation stages. A corresponding manufacturing process was also developed using this system to fabricate 2D and 3D monolithic structures with embedded electronic circuits. The process involved part de...

377 citations

Journal ArticleDOI
TL;DR: In this paper, a PowerPC system-on-a-chip processor which makes use of dynamic voltage scaling and on-the-fly frequency scaling to adapt to the dynamically changing performance demands and power consumption constraints of high-content, battery powered applications is described.
Abstract: A PowerPC system-on-a-chip processor which makes use of dynamic voltage scaling and on-the-fly frequency scaling to adapt to the dynamically changing performance demands and power consumption constraints of high-content, battery powered applications is described. The PowerPC core and caches achieve frequencies as high as 380 MHz at a supply of 1.8 V and active power consumption as low as 53 mW at a supply of 1.0 V. The system executes up to 500 MIPS and can achieve standby power as low as 54 /spl mu/W. Logic supply changes as fast as 10 mV//spl mu/s are supported. A low-voltage PLL supplied by an on-chip regulator, which isolates the clock generator from the variable logic supply, allows the SOC to operate continuously while the logic supply voltage is modified. Hardware accelerators for speech recognition, instruction-stream decompression and cryptography are included in the SOC. The SOC occupies 36 mm/sup 2/ in a 0.18 /spl mu/m, 1.8 V nominal supply, bulk CMOS process.

258 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of the main 3D printing methods, materials and their development in trending applications was carried out in this paper, where the revolutionary applications of AM in biomedical, aerospace, buildings and protective structures were discussed.
Abstract: Freedom of design, mass customisation, waste minimisation and the ability to manufacture complex structures, as well as fast prototyping, are the main benefits of additive manufacturing (AM) or 3D printing. A comprehensive review of the main 3D printing methods, materials and their development in trending applications was carried out. In particular, the revolutionary applications of AM in biomedical, aerospace, buildings and protective structures were discussed. The current state of materials development, including metal alloys, polymer composites, ceramics and concrete, was presented. In addition, this paper discussed the main processing challenges with void formation, anisotropic behaviour, the limitation of computer design and layer-by-layer appearance. Overall, this paper gives an overview of 3D printing, including a survey on its benefits and drawbacks as a benchmark for future research and development.

4,159 citations

Journal ArticleDOI
TL;DR: Polymers are by far the most utilized class of materials for AM and their design, additives, and processing parameters as they relate to enhancing build speed and improving accuracy, functionality, surface finish, stability, mechanical properties, and porosity are addressed.
Abstract: Additive manufacturing (AM) alias 3D printing translates computer-aided design (CAD) virtual 3D models into physical objects. By digital slicing of CAD, 3D scan, or tomography data, AM builds objects layer by layer without the need for molds or machining. AM enables decentralized fabrication of customized objects on demand by exploiting digital information storage and retrieval via the Internet. The ongoing transition from rapid prototyping to rapid manufacturing prompts new challenges for mechanical engineers and materials scientists alike. Because polymers are by far the most utilized class of materials for AM, this Review focuses on polymer processing and the development of polymers and advanced polymer systems specifically for AM. AM techniques covered include vat photopolymerization (stereolithography), powder bed fusion (SLS), material and binder jetting (inkjet and aerosol 3D printing), sheet lamination (LOM), extrusion (FDM, 3D dispensing, 3D fiber deposition, and 3D plotting), and 3D bioprinting....

2,136 citations

Journal ArticleDOI
TL;DR: In this paper, the authors give an overview on 3D printing techniques of polymer composite materials and the properties and performance of 3D printed composite parts as well as their potential applications in the fields of biomedical, electronics and aerospace engineering.
Abstract: The use of 3D printing for rapid tooling and manufacturing has promised to produce components with complex geometries according to computer designs. Due to the intrinsically limited mechanical properties and functionalities of printed pure polymer parts, there is a critical need to develop printable polymer composites with high performance. 3D printing offers many advantages in the fabrication of composites, including high precision, cost effective and customized geometry. This article gives an overview on 3D printing techniques of polymer composite materials and the properties and performance of 3D printed composite parts as well as their potential applications in the fields of biomedical, electronics and aerospace engineering. Common 3D printing techniques such as fused deposition modeling, selective laser sintering, inkjet 3D printing, stereolithography, and 3D plotting are introduced. The formation methodology and the performance of particle-, fiber- and nanomaterial-reinforced polymer composites are emphasized. Finally, important limitations are identified to motivate the future research of 3D printing.

2,132 citations

Journal ArticleDOI
TL;DR: Future directions such as the "print-it-all" paradigm, that have the potential to re-imagine current research and spawn completely new avenues for exploration are pointed out.
Abstract: Additive manufacturing (AM) is poised to bring about a revolution in the way products are designed, manufactured, and distributed to end users. This technology has gained significant academic as well as industry interest due to its ability to create complex geometries with customizable material properties. AM has also inspired the development of the maker movement by democratizing design and manufacturing. Due to the rapid proliferation of a wide variety of technologies associated with AM, there is a lack of a comprehensive set of design principles, manufacturing guidelines, and standardization of best practices. These challenges are compounded by the fact that advancements in multiple technologies (for example materials processing, topology optimization) generate a "positive feedback loop" effect in advancing AM. In order to advance research interest and investment in AM technologies, some fundamental questions and trends about the dependencies existing in these avenues need highlighting. The goal of our review paper is to organize this body of knowledge surrounding AM, and present current barriers, findings, and future trends significantly to the researchers. We also discuss fundamental attributes of AM processes, evolution of the AM industry, and the affordances enabled by the emergence of AM in a variety of areas such as geometry processing, material design, and education. We conclude our paper by pointing out future directions such as the "print-it-all" paradigm, that have the potential to re-imagine current research and spawn completely new avenues for exploration. The fundamental attributes and challenges/barriers of Additive Manufacturing (AM).The evolution of research on AM with a focus on engineering capabilities.The affordances enabled by AM such as geometry, material and tools design.The developments in industry, intellectual property, and education-related aspects.The important future trends of AM technologies.

1,792 citations

Journal ArticleDOI
TL;DR: In this article, a review of additive manufacturing (AM) techniques for producing metal parts are explored, with a focus on the science of metal AM: processing defects, heat transfer, solidification, solid-state precipitation, mechanical properties and post-processing metallurgy.
Abstract: Additive manufacturing (AM), widely known as 3D printing, is a method of manufacturing that forms parts from powder, wire or sheets in a process that proceeds layer by layer. Many techniques (using many different names) have been developed to accomplish this via melting or solid-state joining. In this review, these techniques for producing metal parts are explored, with a focus on the science of metal AM: processing defects, heat transfer, solidification, solid-state precipitation, mechanical properties and post-processing metallurgy. The various metal AM techniques are compared, with analysis of the strengths and limitations of each. Only a few alloys have been developed for commercial production, but recent efforts are presented as a path for the ongoing development of new materials for AM processes.

1,713 citations