scispace - formally typeset
Search or ask a question
Author

Eric P. Smith

Bio: Eric P. Smith is an academic researcher from Goddard Space Flight Center. The author has contributed to research in topics: Galaxy & Supernova. The author has an hindex of 25, co-authored 65 publications receiving 3440 citations. Previous affiliations of Eric P. Smith include Association of Universities for Research in Astronomy & Vanderbilt University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a set of high-redshift supernovae were used to confirm previous supernova evidence for an accelerating universe, and the supernova results were combined with independent flat-universe measurements of the mass density from CMB and galaxy redshift distortion data, they provided a measurement of $w=-1.05^{+0.15}-0.09$ if w is assumed to be constant in time.
Abstract: We report measurements of $\Omega_M$, $\Omega_\Lambda$, and w from eleven supernovae at z=0.36-0.86 with high-quality lightcurves measured using WFPC-2 on the HST. This is an independent set of high-redshift supernovae that confirms previous supernova evidence for an accelerating Universe. Combined with earlier Supernova Cosmology Project data, the new supernovae yield a flat-universe measurement of the mass density $\Omega_M=0.25^{+0.07}_{-0.06}$ (statistical) $\pm0.04$ (identified systematics), or equivalently, a cosmological constant of $\Omega_\Lambda=0.75^{+0.06}_{-0.07}$ (statistical) $\pm0.04$ (identified systematics). When the supernova results are combined with independent flat-universe measurements of $\Omega_M$ from CMB and galaxy redshift distortion data, they provide a measurement of $w=-1.05^{+0.15}_{-0.20}$ (statistical) $\pm0.09$ (identified systematic), if w is assumed to be constant in time. The new data offer greatly improved color measurements of the high-redshift supernovae, and hence improved host-galaxy extinction estimates. These extinction measurements show no anomalous negative E(B-V) at high redshift. The precision of the measurements is such that it is possible to perform a host-galaxy extinction correction directly for individual supernovae without any assumptions or priors on the parent E(B-V) distribution. Our cosmological fits using full extinction corrections confirm that dark energy is required with $P(\Omega_\Lambda>0)>0.99$, a result consistent with previous and current supernova analyses which rely upon the identification of a low-extinction subset or prior assumptions concerning the intrinsic extinction distribution.

1,537 citations

Journal ArticleDOI
TL;DR: The strongest radio galaxies (log P at 408 MHz exceeding 25.5 W/Hz for a Hubble parameter of 75 km/sec per MPC) displayed the most distinct optical morphologies, e.g., bridges, fans, dust features, etc..
Abstract: Results are reported from optical, long-slit interferometry, narrow-band imaging and VLA radiotelescope scans of 43 radio galaxies. The strongest radio galaxies (log P at 408 MHz exceeding 25.5 W/Hz for a Hubble parameter of 75 km/sec per MPC) displayed the most distinct optical morphologies, e.g., bridges, fans, dust features, etc. The sources also emitted continuum lines and other line features which were morphologically distinct from the source regions, conditions which suggest that collisions between galaxies occurred. Other characteristics of the strong radio galaxies are discussed, including lowered optical luminosities, reduced galactic densities, and an absence of edge-darkened radio morphologies. 101 references.

329 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented an extensive new time-series of spectroscopic data of the peculiar SN 1999aa in NGC 2595, including 25 optical spectra between -11 and +58 days with respect to B-band maximum light, providing an unusually complete time history.
Abstract: We present an extensive new time-series of spectroscopic data of the peculiar SN 1999aa in NGC 2595. Our data set includes 25 optical spectra between -11 and +58 days with respect to B-band maximum light, providing an unusually complete time history. The early spectra resemble those of a SN 1991T-like object but with a relatively strong Ca H&K absorption feature. The first clear sign of Si II 6355, characteristic of Type Ia supernovae, is found at day -7 and its velocity remains constant up to at least the first month after B-band maximum light. The transition to normal-looking spectra is found to occur earlier than in SN 1991T suggesting SN 1999aa as a possible link between SN 1991T-like and Branch-normal supernovae. Comparing the observations with synthetic spectra, doubly ionized Fe, Si and Ni are identified at early epochs. These are characteristic of SN 1991T-like objects. Furthermore, in the day -11 spectrum, evidence is found for an absorption feature which could be identified as high velocity C II 6580 or H-alpha. At the same epoch C III 4648.8 at photospheric velocity is probably responsible for the absorption feature at 4500 A. High velocity Ca is found around maximum light together with Si II and Fe II confined in a narrow velocity window. Implied constraints on supernovae progenitor systems and explosion hydrodynamical models are briefly discussed.

113 citations

Journal ArticleDOI
TL;DR: In this article, the morphology, photometric structure, and colors of 72 powerful radio galaxies (PRGs) are presented, and it is found that galaxy interactions and mergers play an important role in the PRG phenomenon.
Abstract: Results on the morphology, photometric structure, and colors of 72 powerful radio galaxies (PRGs) are presented. It is found that galaxy interactions and mergers play an important role in the PRG phenomenon. Over 50 percent of the sample galaxies display optical morphological deviations from elliptical symmetry at high levels of surface brightness. About 20 percent of the galaxies have a second nucleus less than 10 kpc in projection from the main nucleus. The fraction of PRGs in a common envelope with neighboring galaxies is even larger. Surface brightness profiles for galaxies with weak or no emission lines are typically shallower in slope than normal radio-quiet elliptical galaxies, but similar to the brightest cluster galaxies. Surface brightness profiles for strong emission (SE) galaxies are more diverse in form. The SE PRGs have unusually blue average colors relative to giant elliptical galaxies. These colors are spatially extended and not merely due to light from a bright nucleus or extended emission-line gas.

112 citations

Journal ArticleDOI
TL;DR: In this paper, an analysis of deep images of 31 low-redshift QSOs and lower luminosity QSO/AGNs obtained with the prime focus CCD system on the CTIO 4 m telescope is presented.
Abstract: Results of an analysis of deep images of 31 low-redshift QSOs and lower luminosity QSO/AGNs obtained with the prime focus CCD system on the CTIO 4 m telescope are presented. The host galaxies of QSOs are generally luminous systems populating the exponential tail of the galaxy luminosity function. Seyfert galaxies are apparently less luminous than the hosts of radio-quiet QSOs. The radio-loud QSOs are more luminous than the radio-quiet QSO hosts. For the sample of QSOs and QSO/AGNs, there is a trend for the radio-loud hosts to be better fitted by elliptical galaxy models and for the radio-quiet hosts to be fitted by disk galaxies, suggesting that the dichotomy known to exist between Seyfert and radio galaxies extends to much higher levels of nuclear luminosity. These results strengthen the empirical basis for a continuity in properties between Seyfert galaxies and radio-quite QSOs and between radio galaxies and radio-loud QSOs. 51 references.

109 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a simple cosmological model with only six parameters (matter density, Omega_m h^2, baryon density, BH density, Hubble Constant, H_0, amplitude of fluctuations, sigma_8, optical depth, tau, and a slope for the scalar perturbation spectrum, n_s) was proposed to fit the three-year WMAP temperature and polarization data.
Abstract: A simple cosmological model with only six parameters (matter density, Omega_m h^2, baryon density, Omega_b h^2, Hubble Constant, H_0, amplitude of fluctuations, sigma_8, optical depth, tau, and a slope for the scalar perturbation spectrum, n_s) fits not only the three year WMAP temperature and polarization data, but also small scale CMB data, light element abundances, large-scale structure observations, and the supernova luminosity/distance relationship. Using WMAP data only, the best fit values for cosmological parameters for the power-law flat LCDM model are (Omega_m h^2, Omega_b h^2, h, n_s, tau, sigma_8) = 0.1277+0.0080-0.0079, 0.02229+-0.00073, 0.732+0.031-0.032, 0.958+-0.016, 0.089+-0.030, 0.761+0.049-0.048). The three year data dramatically shrink the allowed volume in this six dimensional parameter space. Assuming that the primordial fluctuations are adiabatic with a power law spectrum, the WMAP data_alone_ require dark matter, and favor a spectral index that is significantly less than the Harrison-Zel'dovich-Peebles scale-invariant spectrum (n_s=1, r=0). Models that suppress large-scale power through a running spectral index or a large-scale cut-off in the power spectrum are a better fit to the WMAP and small scale CMB data than the power-law LCDM model: however, the improvement in the fit to the WMAP data is only Delta chi^2 = 3 for 1 extra degree of freedom. The combination of WMAP and other astronomical data yields significant constraints on the geometry of the universe, the equation of state of the dark energy, the gravitational wave energy density, and neutrino properties. Consistent with the predictions of simple inflationary theories, we detect no significant deviations from Gaussianity in the CMB maps.

6,002 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the observational evidence for the current accelerated expansion of the universe and present a number of dark energy models in addition to the conventional cosmological constant, paying particular attention to scalar field models such as quintessence, K-essence and tachyon.
Abstract: We review in detail a number of approaches that have been adopted to try and explain the remarkable observation of our accelerating universe. In particular we discuss the arguments for and recent progress made towards understanding the nature of dark energy. We review the observational evidence for the current accelerated expansion of the universe and present a number of dark energy models in addition to the conventional cosmological constant, paying particular attention to scalar field models such as quintessence, K-essence, tachyon, phantom and dilatonic models. The importance of cosmological scaling solutions is emphasized when studying the dynamical system of scalar fields including coupled dark energy. We study the evolution of cosmological perturbations allowing us to confront them with the observation of the Cosmic Microwave Background and Large Scale Structure and demonstrate how it is possible in principle to reconstruct the equation of state of dark energy by also using Supernovae Ia observational data. We also discuss in detail the nature of tracking solutions in cosmology, particle physics and braneworld models of dark energy, the nature of possible future singularities, the effect of higher order curvature terms to avoid a Big Rip singularity, and approaches to modifying gravity which leads to a late-time accelerated expansion without recourse to a new form of dark energy.

5,954 citations

Journal ArticleDOI
TL;DR: In this article, the Wilkinson Microwave Anisotropy Probe (WMAP) 5-year data were used to constrain the physics of cosmic inflation via Gaussianity, adiabaticity, the power spectrum of primordial fluctuations, gravitational waves, and spatial curvature.
Abstract: The Wilkinson Microwave Anisotropy Probe (WMAP) 5-year data provide stringent limits on deviations from the minimal, six-parameter Λ cold dark matter model. We report these limits and use them to constrain the physics of cosmic inflation via Gaussianity, adiabaticity, the power spectrum of primordial fluctuations, gravitational waves, and spatial curvature. We also constrain models of dark energy via its equation of state, parity-violating interaction, and neutrino properties, such as mass and the number of species. We detect no convincing deviations from the minimal model. The six parameters and the corresponding 68% uncertainties, derived from the WMAP data combined with the distance measurements from the Type Ia supernovae (SN) and the Baryon Acoustic Oscillations (BAO) in the distribution of galaxies, are: Ω b h 2 = 0.02267+0.00058 –0.00059, Ω c h 2 = 0.1131 ± 0.0034, ΩΛ = 0.726 ± 0.015, ns = 0.960 ± 0.013, τ = 0.084 ± 0.016, and at k = 0.002 Mpc-1. From these, we derive σ8 = 0.812 ± 0.026, H 0 = 70.5 ± 1.3 km s-1 Mpc–1, Ω b = 0.0456 ± 0.0015, Ω c = 0.228 ± 0.013, Ω m h 2 = 0.1358+0.0037 –0.0036, z reion = 10.9 ± 1.4, and t 0 = 13.72 ± 0.12 Gyr. With the WMAP data combined with BAO and SN, we find the limit on the tensor-to-scalar ratio of r 1 is disfavored even when gravitational waves are included, which constrains the models of inflation that can produce significant gravitational waves, such as chaotic or power-law inflation models, or a blue spectrum, such as hybrid inflation models. We obtain tight, simultaneous limits on the (constant) equation of state of dark energy and the spatial curvature of the universe: –0.14 < 1 + w < 0.12(95%CL) and –0.0179 < Ω k < 0.0081(95%CL). We provide a set of WMAP distance priors, to test a variety of dark energy models with spatial curvature. We test a time-dependent w with a present value constrained as –0.33 < 1 + w 0 < 0.21 (95% CL). Temperature and dark matter fluctuations are found to obey the adiabatic relation to within 8.9% and 2.1% for the axion-type and curvaton-type dark matter, respectively. The power spectra of TB and EB correlations constrain a parity-violating interaction, which rotates the polarization angle and converts E to B. The polarization angle could not be rotated more than –59 < Δα < 24 (95% CL) between the decoupling and the present epoch. We find the limit on the total mass of massive neutrinos of ∑m ν < 0.67 eV(95%CL), which is free from the uncertainty in the normalization of the large-scale structure data. The number of relativistic degrees of freedom (dof), expressed in units of the effective number of neutrino species, is constrained as N eff = 4.4 ± 1.5 (68%), consistent with the standard value of 3.04. Finally, quantitative limits on physically-motivated primordial non-Gaussianity parameters are –9 < f local NL < 111 (95% CL) and –151 < f equil NL < 253 (95% CL) for the local and equilateral models, respectively.

5,904 citations

Journal ArticleDOI
TL;DR: In this paper, a large-scale correlation function measured from a spectroscopic sample of 46,748 luminous red galaxies from the Sloan Digital Sky Survey is presented, which demonstrates the linear growth of structure by gravitational instability between z ≈ 1000 and the present and confirms a firm prediction of the standard cosmological theory.
Abstract: We present the large-scale correlation function measured from a spectroscopic sample of 46,748 luminous red galaxies from the Sloan Digital Sky Survey. The survey region covers 0.72h −3 Gpc 3 over 3816 square degrees and 0.16 < z < 0.47, making it the best sample yet for the study of large-scale structure. We find a well-detected peak in the correlation function at 100h −1 Mpc separation that is an excellent match to the predicted shape and location of the imprint of the recombination-epoch acoustic oscillations on the low-redshift clustering of matter. This detection demonstrates the linear growth of structure by gravitational instability between z ≈ 1000 and the present and confirms a firm prediction of the standard cosmological theory. The acoustic peak provides a standard ruler by which we can measure the ratio of the distances to z = 0.35 and z = 1089 to 4% fractional accuracy and the absolute distance to z = 0.35 to 5% accuracy. From the overall shape of the correlation function, we measure the matter density mh 2 to 8% and find agreement with the value from cosmic microwave background (CMB) anisotropies. Independent of the constraints provided by the CMB acoustic scale, we find m = 0.273 ±0.025+0.123(1+ w0)+0.137K. Including the CMB acoustic scale, we find that the spatial curvature is K = −0.010 ± 0.009 if the dark energy is a cosmological constant. More generally, our results provide a measurement of cosmological distance, and hence an argument for dark energy, based on a geometric method with the same simple physics as the microwave background anisotropies. The standard cosmological model convincingly passes these new and robust tests of its fundamental properties. Subject headings: cosmology: observations — large-scale structure of the universe — distance scale — cosmological parameters — cosmic microwave background — galaxies: elliptical and lenticular, cD

4,428 citations

Journal ArticleDOI
TL;DR: For a flat universe with a cosmological constant, the transition between the two epochs is constrained to be at z = 0.46 ± 0.13 as mentioned in this paper, and w = -1.02 ± (and w < -0.76 at the 95% confidence level) for an assumed static equation of state of dark energy.
Abstract: We have discovered 16 Type Ia supernovae (SNe Ia) with the Hubble Space Telescope (HST) and have used them to provide the first conclusive evidence for cosmic deceleration that preceded the current epoch of cosmic acceleration. These objects, discovered during the course of the GOODS ACS Treasury program, include 6 of the 7 highest redshift SNe Ia known, all at z > 1.25, and populate the Hubble diagram in unexplored territory. The luminosity distances to these objects and to 170 previously reported SNe Ia have been determined using empirical relations between light-curve shape and luminosity. A purely kinematic interpretation of the SN Ia sample provides evidence at the greater than 99% confidence level for a transition from deceleration to acceleration or, similarly, strong evidence for a cosmic jerk. Using a simple model of the expansion history, the transition between the two epochs is constrained to be at z = 0.46 ± 0.13. The data are consistent with the cosmic concordance model of ΩM ≈ 0.3, ΩΛ ≈ 0.7 (χ = 1.06) and are inconsistent with a simple model of evolution or dust as an alternative to dark energy. For a flat universe with a cosmological constant, we measure ΩM = 0.29 ± (equivalently, ΩΛ = 0.71). When combined with external flat-universe constraints, including the cosmic microwave background and large-scale structure, we find w = -1.02 ± (and w < -0.76 at the 95% confidence level) for an assumed static equation of state of dark energy, P = wρc2. Joint constraints on both the recent equation of state of dark energy, w0, and its time evolution, dw/dz, are a factor of ~8 more precise than the first estimates and twice as precise as those without the SNe Ia discovered with HST. Our constraints are consistent with the static nature of and value of w expected for a cosmological constant (i.e., w0 = -1.0, dw/dz = 0) and are inconsistent with very rapid evolution of dark energy. We address consequences of evolving dark energy for the fate of the universe.

4,236 citations