scispace - formally typeset
E

Eric R. Heller

Researcher at Wright-Patterson Air Force Base

Publications -  88
Citations -  3503

Eric R. Heller is an academic researcher from Wright-Patterson Air Force Base. The author has contributed to research in topics: High-electron-mobility transistor & Gallium nitride. The author has an hindex of 24, co-authored 88 publications receiving 2523 citations. Previous affiliations of Eric R. Heller include University of Alabama in Huntsville & Wright State University.

Papers
More filters
Journal ArticleDOI

Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges

TL;DR: The UWBG semiconductor materials, such as high Al‐content AlGaN, diamond and Ga2O3, advanced in maturity to the point where realizing some of their tantalizing advantages is a relatively near‐term possibility.
Journal ArticleDOI

3.8-MV/cm Breakdown Strength of MOVPE-Grown Sn-Doped $\beta $ -Ga 2 O 3 MOSFETs

TL;DR: In this article, a Sn-doped (100) $\beta $ -Ga2O3 epitaxial layer was grown via metal-organic vapor phase epitaxy onto a single-crystal, Mg-Doped semi-insulating (100, β)-Ga 2O3 substrate.
Journal ArticleDOI

Short-Channel Effect Limitations on High-Frequency Operation of AlGaN/GaN HEMTs for T-Gate Devices

TL;DR: In this paper, an empirically based physical model is presented to predict the expected extrinsic fT for many combinations of gate length and commonly used barrier layer thickness (tbar) on silicon nitride passivated T-gated AlGaN/GaN HEMTs.
Journal ArticleDOI

Electro-thermal modeling of multifinger AlGaN/GaN HEMT device operation including thermal substrate effects.

TL;DR: AlGaN/GaN high electron mobility transistor (HEMT) device operation was modeled from the sub-micrometer scale to the substrate using a combination of an electro-thermal device model for the active device with realistic power dissipation within the device and a coupled three dimensional thermal model to account for the substrate.