scispace - formally typeset
Search or ask a question
Author

Eric Rogers

Bio: Eric Rogers is an academic researcher from National Oceanic and Atmospheric Administration. The author has contributed to research in topics: Mesoscale meteorology & Data assimilation. The author has an hindex of 18, co-authored 27 publications receiving 4299 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The North American Regional Reanalysis (NARR) project as mentioned in this paper uses the NCEP Eta model and its Data Assimilation System (at 32-km-45-layer resolution with 3-hourly output) to capture regional hydrological cycle, the diurnal cycle and other important features of weather and climate variability.
Abstract: In 1997, during the late stages of production of NCEP–NCAR Global Reanalysis (GR), exploration of a regional reanalysis project was suggested by the GR project's Advisory Committee, “particularly if the RDAS [Regional Data Assimilation System] is significantly better than the global reanalysis at capturing the regional hydrological cycle, the diurnal cycle and other important features of weather and climate variability.” Following a 6-yr development and production effort, NCEP's North American Regional Reanalysis (NARR) project was completed in 2004, and data are now available to the scientific community. Along with the use of the NCEP Eta model and its Data Assimilation System (at 32-km–45-layer resolution with 3-hourly output), the hallmarks of the NARR are the incorporation of hourly assimilation of precipitation, which leverages a comprehensive precipitation analysis effort, the use of a recent version of the Noah land surface model, and the use of numerous other datasets that are additional or improv...

3,080 citations

Journal ArticleDOI
TL;DR: Numerical forecasts from a pilot program on short-range ensemble forecasting at the National Centers for Environmental Prediction are examined and it is indicated that using two different numerical models assists in increasing the ensemble spread significantly.
Abstract: Numerical forecasts from a pilot program on short-range ensemble forecasting at the National Centers for Environmental Prediction are examined. The ensemble consists of 10 forecasts made using the 80-km Eta Model and 5 forecasts from the regional spectral model. Results indicate that the accuracy of the ensemble mean is comparable to that from the 29-km Meso Eta Model for both mandatory level data and the 36-h forecast cyclone position. Calculations of spread indicate that at 36 and 48 h the spread from initial conditions created using the breeding of growing modes technique is larger than the spread from initial conditions created using different analyses. However, the accuracy of the forecast cyclone position from these two initialization techniques is nearly identical. Results further indicate that using two different numerical models assists in increasing the ensemble spread significantly. There is little correlation between the spread in the ensemble members and the accuracy of the ensemble mean for the prediction of cyclone location. Since information on forecast uncertainty is needed in many applications, and is one of the reasons to use an ensemble approach, the lack of a correlation between spread and forecast uncertainty presents a challenge to the production of short-range ensemble forecasts. Even though the ensemble dispersion is not found to be an indication of forecast uncertainty, significant spread can occur within the forecasts over a relatively short time period. Examples are shown to illustrate how small uncertainties in the model initial conditions can lead to large differences in numerical forecasts from an identical numerical model.

222 citations

Journal ArticleDOI
TL;DR: A new blended high-resolution real-time global sea surface temperature analysis (RTG_SST), developed specifically for use in operational numerical weather forecasting models, was implemented in NCEP's operational job stream on 30 January 2001, immediately following investigations of miss-forecast precipitation events in the mid-Atlantic states.
Abstract: A new blended high-resolution real-time global sea surface temperature analysis (RTG_SST), developed specifically for use in operational numerical weather forecasting models, was implemented in NCEP's operational job stream on 30 January 2001, immediately following investigations of miss-forecast precipitation events in the mid-Atlantic states. Each daily analysis uses the most recent 24-h receipts of in situ and satellite-derived surface temperature data and provides a global SST field on a 0.5° × 0.5° (latitude-longitude) grid. The RTG_SST provides the sea surface temperature fields for the regional Meso Eta Model, replacing the previously used National Environmental Satellite, Data, and Information Service (NESDIS) 50-km satellite-only SST analysis. Forecast events leading to the implementation of the RTG_SST are described; comparison is made of the properties used in this new analysis with those of the Reynolds-Smith (RS) analysis and the NESDIS 50-km analysis; data ingestion, analysis, and verificati...

222 citations

Journal ArticleDOI
TL;DR: In this paper, the National Centers for Environmental Prediction (NCEP) operational early eta model was improved by an increase in the horizontal grid spacing from 80 to 48 km, incorporation of a cloud prediction scheme, replacement of the original static analysis system with a 12-h intermittent data assimilation system using the ETa model, and use of satellite-sensed total column water data in the eta optimum interpolation analysis.
Abstract: This note describes changes that have been made to the National Centers for Environmental Prediction ( NCEP ) operational ‘‘early’’ eta model. The changes are 1 ) an decrease in horizontal grid spacing from 80 to 48 km, 2 ) incorporation of a cloud prediction scheme, 3 ) replacement of the original static analysis system with a 12-h intermittent data assimilation system using the eta model, and 4 ) the use of satellite-sensed total column water data in the eta optimum interpolation analysis. When tested separately, each of the four changes improved model performance. A quantitative and subjective evaluation of the full upgrade package during March and April 1995 indicated that the 48-km eta model was more skillful than the operational 80-km model in predicting the intensity and movement of large-scale weather systems. In addition, the 48-km eta model was more skillful in predicting severe mesoscale precipitation events than either the 80-km eta model, the nested grid model, or the NCEP global spectral model during the March ‐ April 1995 period. The implementation of this new version of the operational early eta system was performed in October 1995.

220 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of the MERRA-2 system and various performance metrics is provided, including the assimilation of aerosol observations, several improvements to the representation of the stratosphere including ozone, and improved representations of cryospheric processes.
Abstract: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), is the latest atmospheric reanalysis of the modern satellite era produced by NASA’s Global Modeling and Assimilation Office (GMAO). MERRA-2 assimilates observation types not available to its predecessor, MERRA, and includes updates to the Goddard Earth Observing System (GEOS) model and analysis scheme so as to provide a viable ongoing climate analysis beyond MERRA’s terminus. While addressing known limitations of MERRA, MERRA-2 is also intended to be a development milestone for a future integrated Earth system analysis (IESA) currently under development at GMAO. This paper provides an overview of the MERRA-2 system and various performance metrics. Among the advances in MERRA-2 relevant to IESA are the assimilation of aerosol observations, several improvements to the representation of the stratosphere including ozone, and improved representations of cryospheric processes. Other improvements in the quality of M...

4,524 citations

Journal ArticleDOI
TL;DR: The NCEP Climate Forecast System Reanalysis (CFSR) was completed for the 31-yr period from 1979 to 2009, in January 2010 as mentioned in this paper, which was designed and executed as a global, high-resolution coupled atmosphere-ocean-land surface-sea ice system to provide the best estimate of the state of these coupled domains over this period.
Abstract: The NCEP Climate Forecast System Reanalysis (CFSR) was completed for the 31-yr period from 1979 to 2009, in January 2010. The CFSR was designed and executed as a global, high-resolution coupled atmosphere–ocean–land surface–sea ice system to provide the best estimate of the state of these coupled domains over this period. The current CFSR will be extended as an operational, real-time product into the future. New features of the CFSR include 1) coupling of the atmosphere and ocean during the generation of the 6-h guess field, 2) an interactive sea ice model, and 3) assimilation of satellite radiances by the Gridpoint Statistical Interpolation (GSI) scheme over the entire period. The CFSR global atmosphere resolution is ~38 km (T382) with 64 levels extending from the surface to 0.26 hPa. The global ocean's latitudinal spacing is 0.25° at the equator, extending to a global 0.5° beyond the tropics, with 40 levels to a depth of 4737 m. The global land surface model has four soil levels and the global sea ice m...

4,520 citations

Journal ArticleDOI
TL;DR: The Hybrid Single Particle Lagrangian Integrated Trajectory model (HYSPLIT) as mentioned in this paper is one of the most widely used models for atmospheric trajectory and dispersion calculations.
Abstract: The Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT), developed by NOAA’s Air Resources Laboratory, is one of the most widely used models for atmospheric trajectory and dispersion calculations. We present the model’s historical evolution over the last 30 years from simple hand-drawn back trajectories to very sophisticated computations of transport, mixing, chemical transformation, and deposition of pollutants and hazardous materials. We highlight recent applications of the HYSPLIT modeling system, including the simulation of atmospheric tracer release experiments, radionuclides, smoke originated from wild fires, volcanic ash, mercury, and wind-blown dust.

3,875 citations

Journal ArticleDOI
TL;DR: In this paper, two new high-resolution sea surface temperature (SST) analysis products have been developed using optimum interpolation (OI), which have a spatial grid resolution of 0.25° and a temporal resolution of 1 day.
Abstract: Two new high-resolution sea surface temperature (SST) analysis products have been developed using optimum interpolation (OI). The analyses have a spatial grid resolution of 0.25° and a temporal resolution of 1 day. One product uses the Advanced Very High Resolution Radiometer (AVHRR) infrared satellite SST data. The other uses AVHRR and Advanced Microwave Scanning Radiometer (AMSR) on the NASA Earth Observing System satellite SST data. Both products also use in situ data from ships and buoys and include a large-scale adjustment of satellite biases with respect to the in situ data. Because of AMSR’s near-all-weather coverage, there is an increase in OI signal variance when AMSR is added to AVHRR. Thus, two products are needed to avoid an analysis variance jump when AMSR became available in June 2002. For both products, the results show improved spatial and temporal resolution compared to previous weekly 1° OI analyses. The AVHRR-only product uses Pathfinder AVHRR data (currently available from January 1985 to December 2005) and operational AVHRR data for 2006 onward. Pathfinder AVHRR was chosen over operational AVHRR, when available, because Pathfinder agrees better with the in situ data. The AMSR– AVHRR product begins with the start of AMSR data in June 2002. In this product, the primary AVHRR contribution is in regions near land where AMSR is not available. However, in cloud-free regions, use of both infrared and microwave instruments can reduce systematic biases because their error characteristics are independent.

3,422 citations

Journal ArticleDOI
TL;DR: The North American Regional Reanalysis (NARR) project as mentioned in this paper uses the NCEP Eta model and its Data Assimilation System (at 32-km-45-layer resolution with 3-hourly output) to capture regional hydrological cycle, the diurnal cycle and other important features of weather and climate variability.
Abstract: In 1997, during the late stages of production of NCEP–NCAR Global Reanalysis (GR), exploration of a regional reanalysis project was suggested by the GR project's Advisory Committee, “particularly if the RDAS [Regional Data Assimilation System] is significantly better than the global reanalysis at capturing the regional hydrological cycle, the diurnal cycle and other important features of weather and climate variability.” Following a 6-yr development and production effort, NCEP's North American Regional Reanalysis (NARR) project was completed in 2004, and data are now available to the scientific community. Along with the use of the NCEP Eta model and its Data Assimilation System (at 32-km–45-layer resolution with 3-hourly output), the hallmarks of the NARR are the incorporation of hourly assimilation of precipitation, which leverages a comprehensive precipitation analysis effort, the use of a recent version of the Noah land surface model, and the use of numerous other datasets that are additional or improv...

3,080 citations