scispace - formally typeset
Search or ask a question
Author

Eric S. Klein

Bio: Eric S. Klein is an academic researcher from University of Alaska Anchorage. The author has contributed to research in topics: Arctic & Peat. The author has an hindex of 13, co-authored 24 publications receiving 944 citations. Previous affiliations of Eric S. Klein include United States Fish and Wildlife Service & Lehigh University.
Topics: Arctic, Peat, Sea ice, Tundra, Arctic ice pack

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present results from the most comprehensive compilation of Holocene peat soil properties with associated carbon and nitrogen accumulation rates for northern peatlands, which consists of 268 peat cores from 215 sites located north of 45°N.
Abstract: Here, we present results from the most comprehensive compilation of Holocene peat soil properties with associated carbon and nitrogen accumulation rates for northern peatlands. Our database consists of 268 peat cores from 215 sites located north of 45°N. It encompasses regions within which peat carbon data have only recently become available, such as the West Siberia Lowlands, the Hudson Bay Lowlands, Kamchatka in Far East Russia, and the Tibetan Plateau. For all northern peatlands, carbon content in organic matter was estimated at 42 ± 3% (standard deviation) for Sphagnum peat, 51 ± 2% for non-Sphagnum peat, and at 49 ± 2% overall. Dry bulk density averaged 0.12 ± 0.07 g/cm3, organic matter bulk density averaged 0.11 ± 0.05 g/cm3, and total carbon content in peat averaged 47 ± 6%. In general, large differences were found between Sphagnum and non-Sphagnum peat types in terms of peat properties. Time-weighted peat carbon accumulation rates averaged 23 ± 2 (standard error of mean) g C/m2/yr during the Holocene on the basis of 151 peat cores from 127 sites, with the highest rates of carbon accumulation (25-28 g C/m2/yr) recorded during the early Holocene when the climate was

404 citations

Journal ArticleDOI
Angela V. Gallego-Sala1, Dan J. Charman1, Simon Brewer2, Susan Page3, I. Colin Prentice4, Pierre Friedlingstein1, Steve Moreton, Matthew J. Amesbury1, David W. Beilman5, Svante Björck6, Tatiana Blyakharchuk7, Christopher Bochicchio8, Robert K. Booth8, Joan Bunbury9, Philip Camill10, Donna Carless1, Rodney A. Chimner, Michael J. Clifford, Elizabeth L. Cressey1, Colin J Courtney-Mustaphi11, Colin J Courtney-Mustaphi12, François De Vleeschouwer13, Rixt de Jong6, Barbara Fiałkiewicz-Kozieł14, Sarah A. Finkelstein15, Michelle Garneau16, Esther Githumbi11, John Hribjlan, James R. Holmquist17, Paul D.M. Hughes18, Chris D. Jones19, Miriam C. Jones20, Edgar Karofeld21, Eric S. Klein22, Ulla Kokfelt6, Atte Korhola23, Terri Lacourse24, Gaël Le Roux13, Mariusz Lamentowicz14, David Large25, Martin Lavoie26, Julie Loisel27, Helen Mackay28, Glen M. MacDonald17, Markku Mäkilä29, Gabriel Magnan16, Rob Marchant11, Katarzyna Marcisz14, Katarzyna Marcisz30, Antonio Martínez Cortizas31, Charly Massa5, Paul Mathijssen23, D. Mauquoy32, Tim Mighall32, Fraser J.G. Mitchell33, Patrick Moss34, Jonathan E. Nichols35, Pirita Oksanen36, Lisa C. Orme1, Lisa C. Orme37, Maara S. Packalen38, Stephen Robinson39, Thomas P. Roland1, Nicole K. Sanderson1, A. Britta K. Sannel40, Noemí Silva-Sánchez31, Natascha Steinberg1, Graeme T. Swindles41, T. Edward Turner42, T. Edward Turner41, Joanna Uglow1, Minna Väliranta23, Simon van Bellen16, Marjolein van der Linden, Bas van Geel43, Guoping Wang44, Zicheng Yu45, Zicheng Yu8, Joana Zaragoza-Castells1, Yan Zhao44 
TL;DR: This article examined the global relationship between peatland carbon accumulation rates during the last millennium and planetary-scale climate space and found a positive relationship between carbon accumulation and cumulative photosynthetically active radiation during the growing season for mid-to high-latitude peatlands in both hemispheres.
Abstract: The carbon sink potential of peatlands depends on the balance of carbon uptake by plants and microbial decomposition The rates of both these processes will increase with warming but it remains unclear which will dominate the global peatland response Here we examine the global relationship between peatland carbon accumulation rates during the last millennium and planetary-scale climate space A positive relationship is found between carbon accumulation and cumulative photosynthetically active radiation during the growing season for mid- to high-latitude peatlands in both hemispheres However, this relationship reverses at lower latitudes, suggesting that carbon accumulation is lower under the warmest climate regimes Projections under Representative Concentration Pathway (RCP)26 and RCP85 scenarios indicate that the present-day global sink will increase slightly until around ad 2100 but decline thereafter Peatlands will remain a carbon sink in the future, but their response to warming switches from a negative to a positive climate feedback (decreased carbon sink with warming) at the end of the twenty-first century

176 citations

Journal ArticleDOI
TL;DR: The results of this study suggest that the Kenai Peninsula is becoming both woodier in its vegetation and drier, consistent with a regional change in climate.
Abstract: This study documents the scale and intensity of drying over the last half century in the Kenai Lowlands of south-central Alaska. Using historical aerial photos and field sampling of wetlands, inclu...

172 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined differences in peat properties (bulk density, carbon (C), nitrogen (N) and organic matter content, and C/N ratio) and accumulation rates among vegetation types and environmental classes.
Abstract: Permafrost dynamics play an important role in high-latitude peatland carbon balance and are key to understanding the future response of soil carbon stocks. Permafrost aggradation can control the magnitude of the carbon feedback in peatlands through effects on peat properties. We compiled peatland plant macrofossil records for the northern permafrost zone (515 cores from 280 sites) and classified samples by vegetation type and environmental class (fen, bog, tundra and boreal permafrost, and thawed permafrost). We examined differences in peat properties (bulk density, carbon (C), nitrogen (N) and organic matter content, and C/N ratio) and C accumulation rates among vegetation types and environmental classes. Consequences of permafrost aggradation differed between boreal and tundra biomes, including differences in vegetation composition, C/N ratios, and N content. The vegetation composition of tundra permafrost peatlands was similar to permafrost-free fens, while boreal permafrost peatlands more closely resembled permafrost-free bogs. Nitrogen content in boreal permafrost and thawed permafrost peatlands was significantly lower than in permafrost-free bogs despite similar vegetation types (0.9% versus 1.5% N). Median long-term C accumulation rates were higher in fens (23g C m(-2)yr(-1)) than in permafrost-free bogs (18g C m(-2)yr(-1)) and were lowest in boreal permafrost peatlands (14g C m(-2)yr(-1)). The plant macrofossil record demonstrated transitions from fens to bogs to permafrost peatlands, bogs to fens, permafrost aggradation within fens, and permafrost thaw and reaggradation. Using data synthesis, we have identified predominant peatland successional pathways, changes in vegetation type, peat properties, and C accumulation rates associated with permafrost aggradation.

89 citations

Journal ArticleDOI
TL;DR: It is suggested that deeper snow has a cascading set of biophysical consequences that include a deeper active layer that leads to altered species composition, greater leaf nitrogen concentration, and higher ecosystem-level carbon uptake.
Abstract: Climate change is expected to increase summer temperature and winter precipitation throughout the Arctic. The long-term implications of these changes for plant species composition, plant function, and ecosystem processes are difficult to predict. We report on the influence of enhanced snow depth and warmer summer temperature following 20 years of an ITEX experimental manipulation at Toolik Lake, Alaska. Winter snow depth was increased using snow fences and warming was accomplished during summer using passive open-top chambers. One of the most important consequences of these experimental treatments was an increase in active layer depth and rate of thaw, which has led to deeper drainage and lower soil moisture content. Vegetation concomitantly shifted from a relatively wet system with high cover of the sedge Eriophorum vaginatum to a drier system, dominated by deciduous shrubs including Betula nana and Salix pulchra. At the individual plant level, we observed higher leaf nitrogen concentration associated with warmer temperatures and increased snow in S. pulchra and B. nana, but high leaf nitrogen concentration did not lead to higher rates of net photosynthesis. At the ecosystem level, we observed higher GPP and NEE in response to summer warming. Our results suggest that deeper snow has a cascading set of biophysical consequences that include a deeper active layer that leads to altered species composition, greater leaf nitrogen concentration, and higher ecosystem-level carbon uptake.

62 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A copy of the Guangbo jiemu bao [Broadcast Program Report] was being passed from hand to hand among a group of young people eager to be the first to read the article introducing the program "What Is Revolutionary Love?".
Abstract: A copy of Guangbo jiemu bao [Broadcast Program Report] was being passed from hand to hand among a group of young people eager to be the first to read the article introducing the program "What Is Revolutionary Love?" It said: "… Young friends, you are certainly very concerned about this problem'. So, we would like you to meet the young women workers Meng Xiaoyu and Meng Yamei and the older cadre Miss Feng. They are the three leading characters in the short story ‘The Place of Love.’ Through the description of the love lives of these three, the story induces us to think deeply about two questions that merit further examination.

1,528 citations

07 Jan 2013
TL;DR: In this article, the authors analyzed daily fields of 500-hPa heights from the National Centers for Environmental Prediction Reanalysis over N. America and the N. Atlantic to assess changes in north-south (Rossby) wave characteristics associated with Arctic amplification and the relaxation of poleward thickness gradients.
Abstract: [1] Arctic amplification (AA) – the observed enhanced warming in high northern latitudes relative to the northern hemisphere – is evident in lower-tropospheric temperatures and in 1000-to-500 hPa thicknesses. Daily fields of 500 hPa heights from the National Centers for Environmental Prediction Reanalysis are analyzed over N. America and the N. Atlantic to assess changes in north-south (Rossby) wave characteristics associated with AA and the relaxation of poleward thickness gradients. Two effects are identified that each contribute to a slower eastward progression of Rossby waves in the upper-level flow: 1) weakened zonal winds, and 2) increased wave amplitude. These effects are particularly evident in autumn and winter consistent with sea-ice loss, but are also apparent in summer, possibly related to earlier snow melt on high-latitude land. Slower progression of upper-level waves would cause associated weather patterns in mid-latitudes to be more persistent, which may lead to an increased probability of extreme weather events that result from prolonged conditions, such as drought, flooding, cold spells, and heat waves.

1,048 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive review of the status of the contemporary carbon cycle of the Arctic and its response to climate change is presented to clarify key uncertainties and vulnerabilities in the response of the carbon cycle in the Arctic to ongoing climatic change.
Abstract: The recent warming in the Arctic is affecting a broad spectrum of physical, ecological, and human/cultural systems that may be irreversible on century time scales and have the potential to cause rapid changes in the earth system. The response of the carbon cycle of the Arctic to changes in climate is a major issue of global concern, yet there has not been a comprehensive review of the status of the contemporary carbon cycle of the Arctic and its response to climate change. This review is designed to clarify key uncertainties and vulnerabilities in the response of the carbon cycle of the Arctic to ongoing climatic change. While it is clear that there are substantial stocks of carbon in the Arctic, there are also significant uncertainties associated with the magnitude of organic matter stocks contained in permafrost and the storage of methane hydrates beneath both subterranean and submerged permafrost of the Arctic. In the context of the global carbon cycle, this review demonstrates that the Arctic plays an important role in the global dynamics of both CO2 and CH4. Studies suggest that the Arctic has been a sink for atmospheric CO2 of between 0 and 0.8 Pg C/yr in recent decades, which is between 0% and 25% of the global net land/ocean flux during the 1990s. The Arctic is a substantial source of CH4 to the atmosphere (between 32 and 112 Tg CH4/yr), primarily because of the large area of wetlands throughout the region. Analyses to date indicate that the sensitivity of the carbon cycle of the Arctic during the remainder of the 21st century is highly uncertain. To improve the capability to assess the sensitivity of the carbon cycle of the Arctic to projected climate change, we recommend that (1) integrated regional studies be conducted to link observations of carbon dynamics to the processes that are likely to influence those dynamics, and (2) the understanding gained from these integrated studies be incorporated into both uncoupled and fully coupled carbon-climate modeling efforts. (Less)

953 citations

01 Feb 2004
TL;DR: In this paper, the authors used intact core incubations sampled periodically through the winter and following growing season to measure net N mineralization and nitrification in dry heath and in moist tussock tundra under ambient and experimentally increased snow depths.
Abstract: Microbial activity in Arctic tundra ecosystems continues through the winter and is an important component of the annual C budget. This activity is sensitive to climatic variation, particularly snow depth because that regulates soil temperature. The influence of winter conditions on soil N cycling is poorly understood. In this study, we used intact core incubations sampled periodically through the winter and following growing season to measure net N mineralization and nitrification in dry heath and in moist tussock tundra under ambient and experimentally increased snow depths (by use of a snowfence). In dry heath, we sampled soils under Dryas octopetela or Arctostaphylos alpine, while in tussock tundra, we sampled Eriophorum vaginatum tussocks and Sphagnum dominated areas between tussocks. Our objectives were to: (1) examine how different winter snow regimes influenced year-round N dynamics in the two tundra types, and (2) evaluate how these responses are affected by dominant species present in each system. In tussock tundra, soils with increased winter snow cover had high net N mineralization rates during the fall and winter, followed by immobilization during thaw. In contrast, N mineralization only occurred during the autumn in soils with ambient snow cover. During the growing season when N immobilization dominated in areas with ambient snow cover, soils with increased winter snow cover had positive net mineralization and nitrification rates. In dry heath tundra, soils with increased snow depth had high late winter net N mineralization rates, but these rates were: (a) comparable to early winter rates in soils under Arctostaphylos plants with ambient snow cover; (b) greater in soils under Arctostaphylos plants than in soils under Dryas plants; and (c) less than the rates found in tussock tundra. Our findings suggest under ambient snow conditions, low soil temperatures limit soil N mineralization, but that deeper snow conditions with the associated warmer winter soil temperatures dramatically increase over-winter N mineralization and thereby alter the amount and timing of plant-available N in tundra ecosystems. (C) 2003 Elsevier Ltd. All rights reserved.

547 citations

Journal ArticleDOI
TL;DR: In this article, the authors used measurements of tree rings to detect such growth releases and reconstruct the history of spruce beetle outbreaks at 23 mature spruce forests on and near the Kenai Peninsula, Alaska and four mature white spruce (Picea glauca) forests in Kluane National Park and Reserve, Yukon Territory.

426 citations