scispace - formally typeset
Search or ask a question
Author

Eric S. Rountree

Bio: Eric S. Rountree is an academic researcher from University of North Carolina at Chapel Hill. The author has contributed to research in topics: Catalysis & Proton-coupled electron transfer. The author has an hindex of 11, co-authored 14 publications receiving 1702 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a short introduction to cyclic voltammetry is provided to help the reader with data acquisition and interpretation, and common pitfalls are provided, and the reader is encouraged to apply what is learned in short, simple training modules provided in the Supporting Information.
Abstract: Despite the growing popularity of cyclic voltammetry, many students do not receive formalized training in this technique as part of their coursework. Confronted with self-instruction, students can be left wondering where to start. Here, a short introduction to cyclic voltammetry is provided to help the reader with data acquisition and interpretation. Tips and common pitfalls are provided, and the reader is encouraged to apply what is learned in short, simple training modules provided in the Supporting Information. Armed with the basics, the motivated aspiring electrochemist will find existing resources more accessible and will progress much faster in the understanding of cyclic voltammetry.

1,779 citations

Journal ArticleDOI
TL;DR: The cyclic voltammetric responses for a general electrocatalytic one-electron reduction of a substrate are presented along with methods to extract figures of merit from these data and the extension of this analysis to more complex electroCatalytic schemes, such as H2 evolution and CO2 reduction, is discussed.
Abstract: The pursuit of solar fuels has motivated extensive research on molecular electrocatalysts capable of evolving hydrogen from protic solutions, reducing CO2, and oxidizing water. Determining accurate figures of merit for these catalysts requires the careful and appropriate application of electroanalytical techniques. This Viewpoint first briefly presents the fundamentals of cyclic voltammetry and highlights practical experimental considerations before focusing on the application of cyclic voltammetry for the characterization of electrocatalysts. Key metrics for comparing catalysts, including the overpotential (η), potential for catalysis (Ecat), observed rate constant (kobs), and potential-dependent turnover frequency, are discussed. The cyclic voltammetric responses for a general electrocatalytic one-electron reduction of a substrate are presented along with methods to extract figures of merit from these data. The extension of this analysis to more complex electrocatalytic schemes, such as those responsibl...

349 citations

Journal ArticleDOI
TL;DR: Examination of acid electroreduction in acetonitrile on glassy carbon electrodes by cyclic voltammetry provides a guide for selecting acids to use in electrocatalysis experiments such that direct electrode reduction is avoided.
Abstract: Molecular catalysts for electrochemically driven hydrogen evolution are often studied in acetonitrile with glassy carbon working electrodes and Bronsted acids. Surprisingly, little information is available regarding the potentials at which acids are directly reduced on glassy carbon. This work examines acid electroreduction in acetonitrile on glassy carbon electrodes by cyclic voltammetry. Reduction potentials, spanning a range exceeding 2 V, were found for 20 acids. The addition of 100 mM water was not found to shift the reduction potential of any acid studied, although current enhancement was observed for some acids. The data reported provides a guide for selecting acids to use in electrocatalysis experiments such that direct electrode reduction is avoided.

188 citations

Journal ArticleDOI
TL;DR: In this paper, the state-of-the-art spectroscopic and electrochemical methods available to elucidate the mechanisms of proton-coupled electron transfer reactions of fuel-forming catalysts are presented.
Abstract: Proton-coupled electron transfer (PCET) reactions are at the heart of the catalytic processes involved in hydrogen evolution. In this Perspective, the state-of-the-art spectroscopic and electrochemical methods available to elucidate the mechanisms of PCET reactions of fuel-forming catalysts are presented. Through examples of our recent work, the applications of these methods are discussed with a focus on the type of information and the accuracy that can be obtained from each. Three case studies are presented to illustrate different possible origins for peak shifts observed in cyclic voltammograms.

108 citations

Journal ArticleDOI
TL;DR: In this article, the mechanism of hydrogen evolution is governed by three elementary steps; two are acid concentration and pKa dependent, whereas the third is intrinsic to the catalyst, likely reflecting either H-H bond formation or H2 release.
Abstract: Kinetic analysis of hydrogen production catalyzed by Co(dmgBF2)2(CH3CN)2 (dmgBF2 = difluoroboryl-dimethylglyoxime) was performed in acetonitrile with a series of para-substituted anilinium acids. It was determined that the mechanism of hydrogen evolution is governed by three elementary steps; two are acid concentration and pKa dependent, whereas the third was shown to be intrinsic to the catalyst, likely reflecting either H–H bond formation or H2 release. The kinetics of the first proton transfer step, the protonation of the singly reduced catalyst, were evaluated using foot-of-the-wave analysis, as well as current–potential analysis for voltammograms displaying total catalysis behavior. Analysis of the total catalysis peak shift required the empirical determination of a new equation for the ECEC′ catalytic mechanism using digital simulations. The kinetics of the second proton transfer step—assigned to protonation of the doubly reduced, singly protonated species—and the acid-independent step were determin...

81 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a short introduction to cyclic voltammetry is provided to help the reader with data acquisition and interpretation, and common pitfalls are provided, and the reader is encouraged to apply what is learned in short, simple training modules provided in the Supporting Information.
Abstract: Despite the growing popularity of cyclic voltammetry, many students do not receive formalized training in this technique as part of their coursework. Confronted with self-instruction, students can be left wondering where to start. Here, a short introduction to cyclic voltammetry is provided to help the reader with data acquisition and interpretation. Tips and common pitfalls are provided, and the reader is encouraged to apply what is learned in short, simple training modules provided in the Supporting Information. Armed with the basics, the motivated aspiring electrochemist will find existing resources more accessible and will progress much faster in the understanding of cyclic voltammetry.

1,779 citations

Journal ArticleDOI
TL;DR: In this article, a review of recent advances in supercapacitor (SC) technology with respect to charge storage mechanisms, electrode materials, electrolytes (e.g., particularly paper/fiber-like 3D porous structures), and their practical applications is presented.

1,058 citations

Journal ArticleDOI
TL;DR: The developments of the last three decades in electrocatalytic CO2 reduction with homogeneous catalysts are reviewed and important catalyst families are discussed in detail with regard to mechanistic aspects, and recent advances in the field are highlighted.
Abstract: The utilization of CO2 via electrochemical reduction constitutes a promising approach toward production of value-added chemicals or fuels using intermittent renewable energy sources. For this purpose, molecular electrocatalysts are frequently studied and the recent progress both in tuning of the catalytic properties and in mechanistic understanding is truly remarkable. While in earlier years research efforts were focused on complexes with rare metal centers such as Re, Ru, and Pd, the focus has recently shifted toward earth-abundant transition metals such as Mn, Fe, Co, and Ni. By application of appropriate ligands, these metals have been rendered more than competitive for CO2 reduction compared to the heavier homologues. In addition, the important roles of the second and outer coordination spheres in the catalytic processes have become apparent, and metal–ligand cooperativity has recently become a well-established tool for further tuning of the catalytic behavior. Surprising advances have also been made ...

733 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarize the experimental findings for various classes of solid electrolytes and relate them to computational predictions, with the aim of providing a deeper understanding of the interfacial reactions and insight for the future design and engineering of interfaces in SSBs.
Abstract: Solid-state batteries (SSBs) using a solid electrolyte show potential for providing improved safety as well as higher energy and power density compared with conventional Li-ion batteries. However, two critical bottlenecks remain: the development of solid electrolytes with ionic conductivities comparable to or higher than those of conventional liquid electrolytes and the creation of stable interfaces between SSB components, including the active material, solid electrolyte and conductive additives. Although the first goal has been achieved in several solid ionic conductors, the high impedance at various solid/solid interfaces remains a challenge. Recently, computational models based on ab initio calculations have successfully predicted the stability of solid electrolytes in various systems. In addition, a large amount of experimental data has been accumulated for different interfaces in SSBs. In this Review, we summarize the experimental findings for various classes of solid electrolytes and relate them to computational predictions, with the aim of providing a deeper understanding of the interfacial reactions and insight for the future design and engineering of interfaces in SSBs. We find that, in general, the electrochemical stability and interfacial reaction products can be captured with a small set of chemical and physical principles. The reliable operation of solid-state batteries requires stable or passivating interfaces between solid components. In this Review, we discuss models for interfacial reactions and relate the predictions to experimental findings, aiming to provide a deeper understanding of interface stability.

521 citations

Journal ArticleDOI
TL;DR: In molecular-catalysis-based AP, much has been attained, but more challenges remain with regard to long-term stability and heterogenization techniques, and an analysis of the advantages, challenges, and stability of molecular catalysts is provided.
Abstract: Molecular catalysis plays an essential role in both natural and artificial photosynthesis (AP). However, the field of molecular catalysis for AP has gradually declined in recent years because of doubt about the long-term stability of molecular-catalyst-based devices. This review summarizes the development history of molecular-catalyst-based AP, including the fundamentals of AP, molecular catalysts for water oxidation, proton reduction and CO2 reduction, and molecular-catalyst-based AP devices, and it provides an analysis of the advantages, challenges, and stability of molecular catalysts. With this review, we aim to highlight the following points: (i) an investigation on molecular catalysis is one of the most promising ways to obtain atom-efficient catalysts with outstanding intrinsic activities; (ii) effective heterogenization of molecular catalysts is currently the primary challenge for the application of molecular catalysis in AP devices; (iii) development of molecular catalysts is a promising way to solve the problems of catalysis involved in practical solar fuel production. In molecular-catalysis-based AP, much has been attained, but more challenges remain with regard to long-term stability and heterogenization techniques.

512 citations