scispace - formally typeset
Search or ask a question
Author

Eric Serre

Bio: Eric Serre is an academic researcher from Aix-Marseille University. The author has contributed to research in topics: Turbulence & Reynolds number. The author has an hindex of 28, co-authored 210 publications receiving 2675 citations. Previous affiliations of Eric Serre include Centre national de la recherche scientifique & University of Provence.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the structure of the turbulent flow over a simplified automotive model, the Ahmed body (S. R. Ahmed and G. Ramm, 1984) with a 25° slanted back face, is investigated using high-order large-eddy simulations (LESs) at Reynolds number Re=768000.
Abstract: The structure of the turbulent flow over a simplified automotive model, the Ahmed body (S. R. Ahmed and G. Ramm, SAE Paper No. 8403001, 1984) with a 25° slanted back face, is investigated using high-order large-eddy simulations (LESs) at Reynolds number Re=768000. The numerical approach is carried out with a multidomain spectral Chebyshev–Fourier solver and the bluff body is modeled with a pseudopenalization method. The LES capability is implemented thanks to a spectral vanishing viscosity (SVV) technique, with particular attention to the near wall region. Such a SVV-LES approach is extended for the first time to an industrial three-dimensional turbulent flow over a complex geometry. In order to better understand the interactions between flow separations and the dynamic behavior of the released vortex wake, a detailed analysis of the flow structures is provided. The topology of the flow is well captured showing a partial separation of the boundary layer over the slanted face and the occurrence of two stro...

168 citations

Journal ArticleDOI
TL;DR: The new code TOKAM3X simulates plasma turbulence in full torus geometry including the open field lines of the Scrape-off Layer (SOL) and the edge closed field lines region in the vicinity of the separatrix based on drift-reduced Braginskii equations.

123 citations

Journal ArticleDOI
TL;DR: In this article, the influence of curvature and confinement on the boundary layer flows is investigated using three-dimensional direct numerical simulations, based on a pseudo-spectral Chebyshev{Fourier method for solving the incompressible Navier{Stokes equations written in primitive variables.
Abstract: Different instabilities of the boundary layer flows that appear in the cavity between stationary and rotating discs are investigated using three-dimensional direct numerical simulations. The influence of curvature and confinement is studied using two geometrical configurations: (i) a cylindrical cavity including the rotation axis and (ii) an annular cavity radially confined by a shaft and a shroud. The numerical computations are based on a pseudo-spectral Chebyshev{Fourier method for solving the incompressible Navier{Stokes equations written in primitive variables. The high level accuracy of the spectral methods is imperative for the investigation of such instability structures. The basic flow is steady and of the Batchelor type. At a critical rotation rate, stationary axisymmetric and/or three-dimensional structures appear in the B¨odewadt and Ekman layers while at higher rotation rates a second transition to unsteady flow is observed. All features of the transitions are documented. A comparison of the wavenumbers, frequencies, and phase velocities of the instabilities with available theoretical and experimental results shows that both type II (or A) and type I (or B) instabilities appear, depending on flow and geometric control parameters. Interesting patterns exhibiting the coexistence of circular and spiral waves are found under certain conditions.

115 citations

Journal ArticleDOI
TL;DR: In this article, a new transport code, SolEdge2D-EIRENE, has been developed with the ability to simulate the plasma up to the first wall, which is especially important for steady state operation, where thermal loads on all the plasma facing components, even remote from the plasma, are of interest.
Abstract: In the perspective of operating tungsten monoblocks in WEST, the ongoing major upgrade of the Tore Supra tokamak, a dedicated modelling effort has been carried out to simulate the interaction between the edge plasma and the tungsten wall. A new transport code, SolEdge2D–EIRENE, has been developed with the ability to simulate the plasma up to the first wall. This is especially important for steady state operation, where thermal loads on all the plasma facing components, even remote from the plasma, are of interest. Moreover, main chamber tungsten sources are thought to dominate the contamination of the plasma core. We present here in particular new developments aimed at improving the description of the interface between the plasma and the wall, namely a way to treat sheath physics in a more faithful way using the output of 1D particle in cell simulations. Moreover, different models for prompt redeposition have been implemented and are compared. The latter is shown to play an important role in the balance between divertor and main chamber sources.

94 citations

Journal ArticleDOI
TL;DR: A comparative analysis of recent simulations, conducted in the framework of a French-German collaboration on LES of Complex Flows, for the so-called Ahmed body at Reynolds number 768000 and slant angle 25° provides a juxtaposition of results obtained with different eddy-resolving modeling approaches.

92 citations


Cited by
More filters
Book ChapterDOI
01 Jan 1997
TL;DR: The boundary layer equations for plane, incompressible, and steady flow are described in this paper, where the boundary layer equation for plane incompressibility is defined in terms of boundary layers.
Abstract: The boundary layer equations for plane, incompressible, and steady flow are $$\matrix{ {u{{\partial u} \over {\partial x}} + v{{\partial u} \over {\partial y}} = - {1 \over \varrho }{{\partial p} \over {\partial x}} + v{{{\partial ^2}u} \over {\partial {y^2}}},} \cr {0 = {{\partial p} \over {\partial y}},} \cr {{{\partial u} \over {\partial x}} + {{\partial v} \over {\partial y}} = 0.} \cr }$$

2,598 citations

01 Apr 1992
TL;DR: In this paper, the authors proposed a monotone integrated large eddy simulation approach, which incorporates a form of turbulence modeling applicable when the large-scale flows of interest are intrinsically time dependent, thus throwing common statistical models into question.
Abstract: Fluid dynamic turbulence is one of the most challenging computational physics problems because of the extremely wide range of time and space scales involved, the strong nonlinearity of the governing equations, and the many practical and important applications. While most linear fluid instabilities are well understood, the nonlinear interactions among them makes even the relatively simple limit of homogeneous isotropic turbulence difficult to treat physically, mathematically, and computationally. Turbulence is modeled computationally by a two-stage bootstrap process. The first stage, direct numerical simulation, attempts to resolve the relevant physical time and space scales but its application is limited to diffusive flows with a relatively small Reynolds number (Re). Using direct numerical simulation to provide a database, in turn, allows calibration of phenomenological turbulence models for engineering applications. Large eddy simulation incorporates a form of turbulence modeling applicable when the large-scale flows of interest are intrinsically time dependent, thus throwing common statistical models into question. A promising approach to large eddy simulation involves the use of high-resolution monotone computational fluid dynamics algorithms such as flux-corrected transport or the piecewise parabolic method which have intrinsic subgrid turbulence models coupled naturally to the resolved scales in the computed flow. The physical considerations underlying and evidence supporting this monotone integrated large eddy simulation approach are discussed.

849 citations

Book
19 Dec 2003
TL;DR: In this article, the Equations of Gas Dynamics and Magnetoplasmas Dynamics were studied, as well as Magnetoplasma Stability and Transport in Magnetplasmas and Magnetic Stability.
Abstract: 1 The Equations of Gas Dynamics 2 Magnetoplasma Dynamics 3 Waves in Magnetoplasmas 4 Magnetoplasma Stability 5 Transport in Magnetoplasmas 6 Extensions of Theory Bibliography Index

748 citations

Journal Article
TL;DR: The advantages of nuclear fusion as an energy source and research progress in this area are summarized in this article, where the current state of the art is described, including the Compact Ignition Tokamak (CIT), International Thermonuclear Experimental Reactor (ITER), and a US design called TIBER II.
Abstract: The advantages of nuclear fusion as an energy source and research progress in this area are summarized. The current state of the art is described. Laser fusion, inertial confinement fusion, and magnetic fusion (the tokamak) are explained, the latter in some detail. Remaining problems and planned future reactors are considered. They are the Compact Ignition Tokamak (CIT), the International Thermonuclear Experimental Reactor (ITER), and a US design called TIBER II. The design of the latter is shown. >

596 citations

Journal ArticleDOI
TL;DR: In this article, the relationship between the experimental and theoretical results on blob formation is discussed, and the authors present a detailed review of the experimental results and theoretical analysis of blob formation in toroidal plasmas.
Abstract: A blob-filament (or simply “blob”) is a magnetic-field-aligned plasma structure which is considerably denser than the surrounding background plasma and highly localized in the directions perpendicular to the equilibrium magnetic field B. In experiments and simulations, these intermittent filaments are often formed near the boundary between open and closed field lines, and seem to arise in theory from the saturation process for the dominant edge instabilities and turbulence. Blobs become charge-polarized under the action of an external force which causes unequal drifts on ions and electrons; the resulting polarization-induced E × B drift moves the blobs radially outwards across the scrape-off-layer (SOL). Since confined plasmas generally are subject to radial or outwards expansion forces (e.g., curvature and ∇B forces in toroidal plasmas), blob transport is a general phenomenon occurring in nearly all plasmas. This paper reviews the relationship between the experimental and theoretical results on blob form...

509 citations