scispace - formally typeset
Search or ask a question
Author

Eric Siemers

Other affiliations: Indiana University
Bio: Eric Siemers is an academic researcher from Eli Lilly and Company. The author has contributed to research in topics: Solanezumab & Dementia. The author has an hindex of 44, co-authored 145 publications receiving 19862 citations. Previous affiliations of Eric Siemers include Indiana University.


Papers
More filters
Journal ArticleDOI
TL;DR: A conceptual framework and operational research criteria are proposed, based on the prevailing scientific evidence to date, to test and refine these models with longitudinal clinical research studies and it is hoped that these recommendations will provide a common rubric to advance the study of preclinical AD.
Abstract: The pathophysiological process of Alzheimer's disease (AD) is thought to begin many years before the diagnosis of AD dementia. This long "preclinical" phase of AD would provide a critical opportunity for therapeutic intervention; however, we need to further elucidate the link between the pathological cascade of AD and the emergence of clinical symptoms. The National Institute on Aging and the Alzheimer's Association convened an international workgroup to review the biomarker, epidemiological, and neuropsychological evidence, and to develop recommendations to determine the factors which best predict the risk of progression from "normal" cognition to mild cognitive impairment and AD dementia. We propose a conceptual framework and operational research criteria, based on the prevailing scientific evidence to date, to test and refine these models with longitudinal clinical research studies. These recommendations are solely intended for research purposes and do not have any clinical implications at this time. It is hoped that these recommendations will provide a common rubric to advance the study of preclinical AD, and ultimately, aid the field in moving toward earlier intervention at a stage of AD when some disease-modifying therapies may be most efficacious.

5,671 citations

Journal ArticleDOI
TL;DR: This research framework seeks to create a common language with which investigators can generate and test hypotheses about the interactions among different pathologic processes (denoted by biomarkers) and cognitive symptoms and envision that defining AD as a biological construct will enable a more accurate characterization and understanding of the sequence of events that lead to cognitive impairment that is associated with AD.
Abstract: In 2011, the National Institute on Aging and Alzheimer's Association created separate diagnostic recommendations for the preclinical, mild cognitive impairment, and dementia stages of Alzheimer's disease. Scientific progress in the interim led to an initiative by the National Institute on Aging and Alzheimer's Association to update and unify the 2011 guidelines. This unifying update is labeled a "research framework" because its intended use is for observational and interventional research, not routine clinical care. In the National Institute on Aging and Alzheimer's Association Research Framework, Alzheimer's disease (AD) is defined by its underlying pathologic processes that can be documented by postmortem examination or in vivo by biomarkers. The diagnosis is not based on the clinical consequences of the disease (i.e., symptoms/signs) in this research framework, which shifts the definition of AD in living people from a syndromal to a biological construct. The research framework focuses on the diagnosis of AD with biomarkers in living persons. Biomarkers are grouped into those of β amyloid deposition, pathologic tau, and neurodegeneration [AT(N)]. This ATN classification system groups different biomarkers (imaging and biofluids) by the pathologic process each measures. The AT(N) system is flexible in that new biomarkers can be added to the three existing AT(N) groups, and new biomarker groups beyond AT(N) can be added when they become available. We focus on AD as a continuum, and cognitive staging may be accomplished using continuous measures. However, we also outline two different categorical cognitive schemes for staging the severity of cognitive impairment: a scheme using three traditional syndromal categories and a six-stage numeric scheme. It is important to stress that this framework seeks to create a common language with which investigators can generate and test hypotheses about the interactions among different pathologic processes (denoted by biomarkers) and cognitive symptoms. We appreciate the concern that this biomarker-based research framework has the potential to be misused. Therefore, we emphasize, first, it is premature and inappropriate to use this research framework in general medical practice. Second, this research framework should not be used to restrict alternative approaches to hypothesis testing that do not use biomarkers. There will be situations where biomarkers are not available or requiring them would be counterproductive to the specific research goals (discussed in more detail later in the document). Thus, biomarker-based research should not be considered a template for all research into age-related cognitive impairment and dementia; rather, it should be applied when it is fit for the purpose of the specific research goals of a study. Importantly, this framework should be examined in diverse populations. Although it is possible that β-amyloid plaques and neurofibrillary tau deposits are not causal in AD pathogenesis, it is these abnormal protein deposits that define AD as a unique neurodegenerative disease among different disorders that can lead to dementia. We envision that defining AD as a biological construct will enable a more accurate characterization and understanding of the sequence of events that lead to cognitive impairment that is associated with AD, as well as the multifactorial etiology of dementia. This approach also will enable a more precise approach to interventional trials where specific pathways can be targeted in the disease process and in the appropriate people.

5,126 citations

Journal ArticleDOI
TL;DR: Develop a cerebrospinal fluid biomarker signature for mild Alzheimer's disease (AD) in Alzheimer's Disease Neuroimaging Initiative (ADNI) subjects.
Abstract: If the clinical diagnosis of probable AD is imprecise with accuracy rates of approximately 90% or lower using established consensus criteria for probable AD, but definite AD requires autopsy confirmation, it is not surprising that diagnostic accuracy is lower at early and presymptomatic stages of AD.1–4 It is believed that the development of full-blown AD takes place over an approximately 20-year prodromal period, but this is difficult to determine in the absence of biomarkers that reliably signal the onset of nascent disease before the emergence of measurable cognitive impairments. Because intervention with disease-modifying therapies for AD is likely to be most efficacious before significant neurodegeneration has occurred, there is an urgent need for biomarker-based tests that enable a more accurate and early diagnosis of AD.5–7 Moreover, such tests could also improve monitoring AD progression, evaluation of new AD therapies, and enrichment of AD cohorts with specific subsets of AD subjects in clinical trials. The defining lesions of AD are neurofibrillary tangles and senile plaques formed, respectively, by neuronal accumulations of abnormal hyperphosphorylated tau filaments and extracellular deposits of amyloid β (Aβ) fibrils, mostly the 1 to 42 peptide (Aβ1-42), the least soluble of the known Aβ peptides produced from Aβ precursor protein by the action of various peptidases.1–3 Hence, for these and other reasons summarized in consensus reports on AD biomarkers, cerebrospinal fluid (CSF), total tau (t-tau), and Aβ were identified as being among the most promising and informative AD biomarkers.5,6 Increased levels of tau in CSF are thought to occur after its release from damaged and dying neurons that harbor dystrophic tau neurites and tangles, whereas reduced CSF levels of Aβ1-42 are believed to result from large-scale accumulation of this least soluble of Aβ peptides into insoluble plaques in the AD brain. The combination of increased CSF concentrations of t-tau and phosphotau (p-tau) species and decreased concentrations of Aβ1-42 are considered to be a pathological CSF biomarker signature that is diagnostic for AD.5,6,8,9 Notably, recent studies have provided compelling preliminary data to suggest that this combination of CSF tau and Aβ biomarker changes may predict the conversion to AD in mild cognitive impairment (MCI) subjects.10 Thus, an increase in levels of CSF tau associated with a decline in levels of CSF Aβ1-42 may herald the onset of AD before it becomes clinically manifest. However, before the utility of CSF Aβ1-42 and tau concentrations for diagnosis of AD can be established, it is critical to standardize the methodology for their measurement.5–8,10 For example, among the published studies of CSF tau and Aβ, there is considerable variability in the observed levels of these analytes, as well as their diagnostic sensitivity and specificity. This is attributable to variability in analytical methodology standardization and other factors that differ between studies of the same CSF analytes in similar but not identical cohorts.5–7 The Alzheimer’s Disease Neuroimaging Initiative (ADNI) was launched in 2004 to address these and other limitations in AD biomarkers (see reviews in Shaw and colleagues7 and Mueller and coauthors,11 and the ADNI Web site [http://www.adni-info.org/index] where the ADNI grant and all ADNI data are posted for public access). To this end, the Biomarker Core of ADNI conducts studies on ADNI-derived CSF samples to measure CSF Aβ1-42, t-tau, and p-tau (tau phosphorylated at threonine181 [p-tau181p]) in standardized assays. Evaluation of CSF obtained at baseline evaluation of 416 of the 819 ADNI subjects is now complete, and we report here our findings on the performance of these tests using a standardized multiplex immunoassay system that measures the biomarkers simultaneously in the same sample aliquot in ADNI subjects and in an independent cohort of autopsy-confirmed AD cases.

1,912 citations

Journal ArticleDOI
TL;DR: Solanezumab, a humanized monoclonal antibody that binds amyloid, failed to improve cognition or functional ability in patients with mild Alzheimer's disease.
Abstract: BackgroundAlzheimer's disease is characterized by amyloid-beta plaques, neurofibrillary tangles, gliosis, and neuronal loss. Solanezumab, a humanized monoclonal antibody, preferentially binds soluble forms of amyloid and in preclinical studies promoted its clearance from the brain. MethodsIn two phase 3, double-blind trials (EXPEDITION 1 and EXPEDITION 2), we randomly assigned 1012 and 1040 patients, respectively, with mild-to-moderate Alzheimer's disease to receive placebo or solanezumab (administered intravenously at a dose of 400 mg) every 4 weeks for 18 months. The primary outcomes were the changes from baseline to week 80 in scores on the 11-item cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-cog11; range, 0 to 70, with higher scores indicating greater cognitive impairment) and the Alzheimer's Disease Cooperative Study–Activities of Daily Living scale (ADCS-ADL; range, 0 to 78, with lower scores indicating worse functioning). After analysis of data from EXPEDITION 1, the primary...

1,388 citations

Journal ArticleDOI
TL;DR: As compared with placebo, semagacestat did not improve cognitive status, and patients receiving the higher dose had significant worsening of functional ability, and semagACestat was associated with more adverse events, including skin cancers and infections.
Abstract: BackgroundAlzheimer's disease is characterized by the presence of cortical amyloid-beta (Aβ) protein plaques, which result from the sequential action of β-secretase and γ-secretase on amyloid precursor protein. Semagacestat is a small-molecule γ-secretase inhibitor that was developed as a potential treatment for Alzheimer's disease. MethodsWe conducted a double-blind, placebo-controlled trial in which 1537 patients with probable Alzheimer's disease underwent randomization to receive 100 mg of semagacestat, 140 mg of semagacestat, or placebo daily. Changes in cognition from baseline to week 76 were assessed with the use of the cognitive subscale of the Alzheimer's Disease Assessment Scale for cognition (ADAS-cog), on which scores range from 0 to 70 and higher scores indicate greater cognitive impairment, and changes in functioning were assessed with the Alzheimer's Disease Cooperative Study–Activities of Daily Living (ADCS-ADL) scale, on which scores range from 0 to 78 and higher scores indicate better fun...

963 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The workgroup sought to ensure that the revised criteria would be flexible enough to be used by both general healthcare providers without access to neuropsychological testing, advanced imaging, and cerebrospinal fluid measures, and specialized investigators involved in research or in clinical trial studies who would have these tools available.
Abstract: The National Institute on Aging and the Alzheimer's Association charged a workgroup with the task of revising the 1984 criteria for Alzheimer's disease (AD) dementia. The workgroup sought to ensure that the revised criteria would be flexible enough to be used by both general healthcare providers without access to neuropsychological testing, advanced imaging, and cerebrospinal fluid measures, and specialized investigators involved in research or in clinical trial studies who would have these tools available. We present criteria for all-cause dementia and for AD dementia. We retained the general framework of probable AD dementia from the 1984 criteria. On the basis of the past 27 years of experience, we made several changes in the clinical criteria for the diagnosis. We also retained the term possible AD dementia, but redefined it in a manner more focused than before. Biomarker evidence was also integrated into the diagnostic formulations for probable and possible AD dementia for use in research settings. The core clinical criteria for AD dementia will continue to be the cornerstone of the diagnosis in clinical practice, but biomarker evidence is expected to enhance the pathophysiological specificity of the diagnosis of AD dementia. Much work lies ahead for validating the biomarker diagnosis of AD dementia.

13,710 citations

Journal ArticleDOI
TL;DR: A conceptual framework and operational research criteria are proposed, based on the prevailing scientific evidence to date, to test and refine these models with longitudinal clinical research studies and it is hoped that these recommendations will provide a common rubric to advance the study of preclinical AD.
Abstract: The pathophysiological process of Alzheimer's disease (AD) is thought to begin many years before the diagnosis of AD dementia. This long "preclinical" phase of AD would provide a critical opportunity for therapeutic intervention; however, we need to further elucidate the link between the pathological cascade of AD and the emergence of clinical symptoms. The National Institute on Aging and the Alzheimer's Association convened an international workgroup to review the biomarker, epidemiological, and neuropsychological evidence, and to develop recommendations to determine the factors which best predict the risk of progression from "normal" cognition to mild cognitive impairment and AD dementia. We propose a conceptual framework and operational research criteria, based on the prevailing scientific evidence to date, to test and refine these models with longitudinal clinical research studies. These recommendations are solely intended for research purposes and do not have any clinical implications at this time. It is hoped that these recommendations will provide a common rubric to advance the study of preclinical AD, and ultimately, aid the field in moving toward earlier intervention at a stage of AD when some disease-modifying therapies may be most efficacious.

5,671 citations

Journal ArticleDOI
TL;DR: This research framework seeks to create a common language with which investigators can generate and test hypotheses about the interactions among different pathologic processes (denoted by biomarkers) and cognitive symptoms and envision that defining AD as a biological construct will enable a more accurate characterization and understanding of the sequence of events that lead to cognitive impairment that is associated with AD.
Abstract: In 2011, the National Institute on Aging and Alzheimer's Association created separate diagnostic recommendations for the preclinical, mild cognitive impairment, and dementia stages of Alzheimer's disease. Scientific progress in the interim led to an initiative by the National Institute on Aging and Alzheimer's Association to update and unify the 2011 guidelines. This unifying update is labeled a "research framework" because its intended use is for observational and interventional research, not routine clinical care. In the National Institute on Aging and Alzheimer's Association Research Framework, Alzheimer's disease (AD) is defined by its underlying pathologic processes that can be documented by postmortem examination or in vivo by biomarkers. The diagnosis is not based on the clinical consequences of the disease (i.e., symptoms/signs) in this research framework, which shifts the definition of AD in living people from a syndromal to a biological construct. The research framework focuses on the diagnosis of AD with biomarkers in living persons. Biomarkers are grouped into those of β amyloid deposition, pathologic tau, and neurodegeneration [AT(N)]. This ATN classification system groups different biomarkers (imaging and biofluids) by the pathologic process each measures. The AT(N) system is flexible in that new biomarkers can be added to the three existing AT(N) groups, and new biomarker groups beyond AT(N) can be added when they become available. We focus on AD as a continuum, and cognitive staging may be accomplished using continuous measures. However, we also outline two different categorical cognitive schemes for staging the severity of cognitive impairment: a scheme using three traditional syndromal categories and a six-stage numeric scheme. It is important to stress that this framework seeks to create a common language with which investigators can generate and test hypotheses about the interactions among different pathologic processes (denoted by biomarkers) and cognitive symptoms. We appreciate the concern that this biomarker-based research framework has the potential to be misused. Therefore, we emphasize, first, it is premature and inappropriate to use this research framework in general medical practice. Second, this research framework should not be used to restrict alternative approaches to hypothesis testing that do not use biomarkers. There will be situations where biomarkers are not available or requiring them would be counterproductive to the specific research goals (discussed in more detail later in the document). Thus, biomarker-based research should not be considered a template for all research into age-related cognitive impairment and dementia; rather, it should be applied when it is fit for the purpose of the specific research goals of a study. Importantly, this framework should be examined in diverse populations. Although it is possible that β-amyloid plaques and neurofibrillary tau deposits are not causal in AD pathogenesis, it is these abnormal protein deposits that define AD as a unique neurodegenerative disease among different disorders that can lead to dementia. We envision that defining AD as a biological construct will enable a more accurate characterization and understanding of the sequence of events that lead to cognitive impairment that is associated with AD, as well as the multifactorial etiology of dementia. This approach also will enable a more precise approach to interventional trials where specific pathways can be targeted in the disease process and in the appropriate people.

5,126 citations

Journal ArticleDOI
01 May 1981
TL;DR: This chapter discusses Detecting Influential Observations and Outliers, a method for assessing Collinearity, and its applications in medicine and science.
Abstract: 1. Introduction and Overview. 2. Detecting Influential Observations and Outliers. 3. Detecting and Assessing Collinearity. 4. Applications and Remedies. 5. Research Issues and Directions for Extensions. Bibliography. Author Index. Subject Index.

4,948 citations