scispace - formally typeset
Search or ask a question
Author

Eric Silberman

Bio: Eric Silberman is an academic researcher from Tel Aviv University. The author has contributed to research in topics: Biocompatible material & Biomedical engineering. The author has co-authored 1 publications.

Papers
More filters
Journal ArticleDOI
TL;DR: A review of state-of-the-art studies, challenges that have not yet been overcome and perspectives on cardiac tissue engineering can be found in this paper, where the most clinically relevant cell sources used in this field and discuss the use of topological, biophysical and metabolic stimuli to obtain mature phenotypes of cardiomyocytes.
Abstract: Successfully engineering a functional, human, myocardial pump would represent a therapeutic alternative for the millions of patients with end-stage heart disease and provide an alternative to animal-based preclinical models. Although the field of cardiac tissue engineering has made tremendous advances, major challenges remain, which, if properly resolved, might allow the clinical implementation of engineered, functional, complex 3D structures in the future. In this Review, we provide an overview of state-of-the-art studies, challenges that have not yet been overcome and perspectives on cardiac tissue engineering. We begin with the most clinically relevant cell sources used in this field and discuss the use of topological, biophysical and metabolic stimuli to obtain mature phenotypes of cardiomyocytes, particularly in relation to organized cytoskeletal and contractile intracellular structures. We then move from the cellular level to engineering planar cardiac patches and discuss the need for proper vascularization and the main strategies for obtaining it. Finally, we provide an overview of several different approaches for the engineering of volumetric organs and organ parts - from whole-heart decellularization and recellularization to advanced 3D printing technologies.

22 citations

Journal ArticleDOI
TL;DR: In this paper , a method for reinforcing an engineered cardiac tissue fabricated from differentiated iPSCs and an ECM-based hydrogel in a manner that is fully biocompatible is presented.
Abstract: Despite advances in biomaterials engineering, a large gap remains between the weak mechanical properties that can be achieved with natural materials and the strength of synthetic materials. Here, we present a method for reinforcing an engineered cardiac tissue fabricated from differentiated iPSCs and an ECM-based hydrogel in a manner that is fully biocompatible. The reinforcement occurs as a post-fabrication step, which allows for the use of 3D printing technology to generate thick, fully cellularized, and vascularized cardiac tissues. After tissue assembly and during the maturation process in a soft hydrogel, a small, tissue-penetrating reinforcer is deployed, leading to a significant increase in the tissue's mechanical properties. The tissue's robustness is demonstrated by injecting the tissue in a simulated minimally invasive procedure and showing that the tissue is functional and undamaged at the nano-, micro-, and macro-scales. This article is protected by copyright. All rights reserved.

Cited by
More filters
Journal ArticleDOI
01 Apr 2022-Polymers
TL;DR: In this article , a review of recent progress made in the use of electrospun nanofibers to purify polluted water, wherein the distinctive characteristics of this type of nanofiber are essential when using them to remove organic and inorganic pollutants from wastewater, as well as for oil/water (O/W) separation.
Abstract: Recently, nanofibers have come to be considered one of the sustainable routes with enormous applicability in different fields, such as wastewater treatment. Electrospun nanofibers can be fabricated from various materials, such as synthetic and natural polymers, and contribute to the synthesis of novel nanomaterials and nanocomposites. Therefore, they have promising properties, such as an interconnected porous structure, light weight, high porosity, and large surface area, and are easily modified with other polymeric materials or nanomaterials to enhance their suitability for specific applications. As such, this review surveys recent progress made in the use of electrospun nanofibers to purify polluted water, wherein the distinctive characteristics of this type of nanofiber are essential when using them to remove organic and inorganic pollutants from wastewater, as well as for oil/water (O/W) separation.

25 citations

Journal ArticleDOI
TL;DR: An overview of the challenges and research frontier of innovative biomaterials and devices for the treatment of cardiovascular diseases and their future development directions are discussed in the conclusion.
Abstract: Cardiovascular diseases have become the leading cause of death worldwide. The increasing burden of cardiovascular diseases has become a major public health problem and how to carry out efficient and reliable treatment of cardiovascular diseases has become an urgent global problem to be solved. Recently, implantable biomaterials and devices, especially minimally invasive interventional ones, such as vascular stents, artificial heart valves, bioprosthetic cardiac occluders, artificial graft cardiac patches, atrial shunts, and injectable hydrogels against heart failure, have become the most effective means in the treatment of cardiovascular diseases. Herein, an overview of the challenges and research frontier of innovative biomaterials and devices for the treatment of cardiovascular diseases is provided, and their future development directions are discussed.

24 citations

Journal ArticleDOI
03 Oct 2022-ACS Nano
TL;DR: An injectable mechanical-electrical coupling hydrogel patch developed via dynamic covalent/noncovalent cross-linking appropriate for cell encapsulation and minimally invasive implantation into the pericardial cavity that effectively prevents ventricular fibrosis and remodeling, promotes neovascularization, and restores electrical propagation and synchronized pulsation, facilitating the clinical translation of cardiac tissue engineering.
Abstract: Although hydrogel-based patches have shown promising therapeutic efficacy in myocardial infarction (MI), synergistic mechanical, electrical, and biological cues are required to restore cardiac electrical conduction and diastolic-systolic function. Here, an injectable mechanical-electrical coupling hydrogel patch (MEHP) is developed via dynamic covalent/noncovalent cross-linking, appropriate for cell encapsulation and minimally invasive implantation into the pericardial cavity. Pericardial fixation and hydrogel self-adhesiveness properties enable the MEHP to highly compliant interfacial coupling with cyclically deformed myocardium. The self-adaptive MEHP inhibits ventricular dilation while assisting cardiac pulsatile function. The MEHP with the electrical conductivity and sensitivity to match myocardial tissue improves electrical connectivity between healthy and infarcted areas and increases electrical conduction velocity and synchronization. Overall, the MEHP combined with cell therapy effectively prevents ventricular fibrosis and remodeling, promotes neovascularization, and restores electrical propagation and synchronized pulsation, facilitating the clinical translation of cardiac tissue engineering.

11 citations

Journal ArticleDOI
01 Apr 2022-Polymers
TL;DR: In this paper , a review of recent progress in electrospun nanofibers and their applications in various biomedical fields, such as bone cell proliferation, nerve regeneration, and vascular tissue, and skin tissue, engineering is presented.
Abstract: Electrospun techniques are promising and flexible technologies to fabricate ultrafine fiber/nanofiber materials from diverse materials with unique characteristics under optimum conditions. These fabricated fibers/nanofibers via electrospinning can be easily assembled into several shapes of three-dimensional (3D) structures and can be combined with other nanomaterials. Therefore, electrospun nanofibers, with their structural and functional advantages, have gained considerable attention from scientific communities as suitable candidates in biomedical fields, such as the regeneration of tissues and organs, where they can mimic the network structure of collagen fiber in its natural extracellular matrix(es). Due to these special features, electrospinning has been revolutionized as a successful technique to fabricate such nanomaterials from polymer media. Therefore, this review reports on recent progress in electrospun nanofibers and their applications in various biomedical fields, such as bone cell proliferation, nerve regeneration, and vascular tissue, and skin tissue, engineering. The functionalization of the fabricated electrospun nanofibers with different materials furnishes them with promising properties to enhance their employment in various fields of biomedical applications. Finally, we highlight the challenges and outlooks to improve and enhance the application of electrospun nanofibers in these applications.

11 citations

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper summarized the main applications and recent research progresses of additive manufacturing in dentistry, and sketched out some challenges and future directions of the additive manufacturing technology for dentistry.
Abstract: In recent ten years, with the fast development of digital and engineering manufacturing technology, additive manufacturing has already been more and more widely used in the field of dentistry, from the first personalized surgical guides to the latest personalized restoration crowns and root implants. In particular, the bioprinting of teeth and tissue is of great potential to realize organ regeneration and finally improve the life quality. In this review paper, we firstly presented the workflow of additive manufacturing technology. Then, we summarized the main applications and recent research progresses of additive manufacturing in dentistry. Lastly, we sketched out some challenges and future directions of additive manufacturing technology in dentistry.

5 citations