scispace - formally typeset
Search or ask a question
Author

Eric Tournié

Bio: Eric Tournié is an academic researcher from University of Montpellier. The author has contributed to research in topics: Molecular beam epitaxy & Quantum well. The author has an hindex of 36, co-authored 311 publications receiving 4621 citations. Previous affiliations of Eric Tournié include Institut Universitaire de France & Max Planck Society.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, temperature-dependent photoluminescence (PL) spectroscopy as-grown GaInNAs, InGaAs, and GaAsN quantum wells (QWs) embedded in a GaAs matrix was investigated.
Abstract: We have investigated by temperature-dependent photoluminescence (PL) spectroscopy as-grown GaInNAs, InGaAs, and GaAsN quantum wells (QWs) embedded in a GaAs matrix. The evolution of the PL peak position and of the PL linewidth shows evidence of a strong carrier localization for the GaInNAs QWs only. The high delocalization temperature, in the 150 K range, indicates the presence of a high density of possibly deep-localizing potential wells. In addition, a higher density of nonradiative recombination centers appears to result in stronger carrier localization. Transmission electron microscopy reveals well defined, flat interfaces, in these comparatively high N-content (yN∼0.04–0.05) QWs. Our results thus demonstrate that the origin of localization in GaInNAs QWs is the concomitant presence of both In and N, which may result in strain and/or composition fluctuations.

127 citations

Journal ArticleDOI
TL;DR: In this paper, a silicon-based photonic integrated circuit technology for applications beyond the telecommunication wavelength range is discussed, where the strong nonlinearity of silicon combined with the low nonlinear absorption in the mid-infrared is exploited to generate picosecond pulse based supercontinuum sources, optical parametric oscillators and wavelength translators connecting the tele communication wavelength range and the midinfrared.
Abstract: In this paper we discuss silicon-based photonic integrated circuit technology for applications beyond the telecommunication wavelength range. Silicon-on-insulator and germanium-on-silicon passive waveguide circuits are described, as well as the integration of III-V semiconductors, IV-VI colloidal nanoparticles and GeSn alloys on these circuits for increasing the functionality. The strong nonlinearity of silicon combined with the low nonlinear absorption in the mid-infrared is exploited to generate picosecond pulse based supercontinuum sources, optical parametric oscillators and wavelength translators connecting the telecommunication wavelength range and the mid-infrared.

116 citations

Journal ArticleDOI
TL;DR: Good performance of the miniature spectrometers over all operational wavelengths which paves the way to on-chip absorption spectroscopy in this wavelength range.
Abstract: We present a silicon-on-insulator (SOI) based spectrometer platform for a wide operational wavelength range. Both planar concave grating (PCG, also known as echelle grating) and arrayed waveguide grating (AWG) spectrometer designs are explored for operation in the short-wave infrared. In addition, a total of four planar concave gratings are designed to cover parts of the wavelength range from 1510 to 2300 nm. These passive wavelength demultiplexers are combined with GaInAsSb photodiodes. These photodiodes are heterogeneously integrated on SOI with benzocyclobutene (DVS-BCB) as an adhesive bonding layer. The uniformity of the photodiode characteristics and high processing yield, indicate a robust fabrication process. We demonstrate good performance of the miniature spectrometers over all operational wavelengths which paves the way to on-chip absorption spectroscopy in this wavelength range.

92 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of ex situ postgrowth annealing on the properties of a series of dedicated Ga(In)(N)As ternary and quaternary quantum wells (QWs) confined by various barrier layers is investigated.
Abstract: We have investigated by photoluminescence spectroscopy and x-ray diffraction the influence of ex situ postgrowth annealing on the properties of a series of dedicated Ga(In)(N)As ternary and quaternary quantum wells (QWs) confined by various barrier layers. We show that the low growth temperature and not N per se, is largely responsible for the low radiative efficiency of Ga(In)NAs QWs. Furthermore, postgrowth annealing induces a blueshift of the photoluminescence line in the case of quaternary GaInNAs QWs only, while x-ray diffraction reveals the absence of compositional change. We conclude with the occurrence of a local reorganization of the N-bonding configuration within the GaInNAs quaternary material during annealing.

88 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive, up-to-date compilation of band parameters for the technologically important III-V zinc blende and wurtzite compound semiconductors.
Abstract: We present a comprehensive, up-to-date compilation of band parameters for the technologically important III–V zinc blende and wurtzite compound semiconductors: GaAs, GaSb, GaP, GaN, AlAs, AlSb, AlP, AlN, InAs, InSb, InP, and InN, along with their ternary and quaternary alloys. Based on a review of the existing literature, complete and consistent parameter sets are given for all materials. Emphasizing the quantities required for band structure calculations, we tabulate the direct and indirect energy gaps, spin-orbit, and crystal-field splittings, alloy bowing parameters, effective masses for electrons, heavy, light, and split-off holes, Luttinger parameters, interband momentum matrix elements, and deformation potentials, including temperature and alloy-composition dependences where available. Heterostructure band offsets are also given, on an absolute scale that allows any material to be aligned relative to any other.

6,349 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive and up-to-date compilation of band parameters for all of the nitrogen-containing III-V semiconductors that have been investigated to date is presented.
Abstract: We present a comprehensive and up-to-date compilation of band parameters for all of the nitrogen-containing III–V semiconductors that have been investigated to date. The two main classes are: (1) “conventional” nitrides (wurtzite and zinc-blende GaN, InN, and AlN, along with their alloys) and (2) “dilute” nitrides (zinc-blende ternaries and quaternaries in which a relatively small fraction of N is added to a host III–V material, e.g., GaAsN and GaInAsN). As in our more general review of III–V semiconductor band parameters [I. Vurgaftman et al., J. Appl. Phys. 89, 5815 (2001)], complete and consistent parameter sets are recommended on the basis of a thorough and critical review of the existing literature. We tabulate the direct and indirect energy gaps, spin-orbit and crystal-field splittings, alloy bowing parameters, electron and hole effective masses, deformation potentials, elastic constants, piezoelectric and spontaneous polarization coefficients, as well as heterostructure band offsets. Temperature an...

2,525 citations

Journal ArticleDOI
TL;DR: In this article, the authors compare the performance of SiC, GaN, and ZnSe for high-temperature electronics and short-wavelength optical applications and conclude that SiC is the leading contender for high temperature and high power applications if ohmic contacts and interface state densities can be further improved.
Abstract: In the past several years, research in each of the wide‐band‐gap semiconductors, SiC, GaN, and ZnSe, has led to major advances which now make them viable for device applications. The merits of each contender for high‐temperature electronics and short‐wavelength optical applications are compared. The outstanding thermal and chemical stability of SiC and GaN should enable them to operate at high temperatures and in hostile environments, and also make them attractive for high‐power operation. The present advanced stage of development of SiC substrates and metal‐oxide‐semiconductor technology makes SiC the leading contender for high‐temperature and high‐power applications if ohmic contacts and interface‐state densities can be further improved. GaN, despite fundamentally superior electronic properties and better ohmic contact resistances, must overcome the lack of an ideal substrate material and a relatively advanced SiC infrastructure in order to compete in electronics applications. Prototype transistors have been fabricated from both SiC and GaN, and the microwave characteristics and high‐temperature performance of SiC transistors have been studied. For optical emitters and detectors, ZnSe, SiC, and GaN all have demonstrated operation in the green, blue, or ultraviolet (UV) spectra. Blue SiC light‐emitting diodes (LEDs) have been on the market for several years, joined recently by UV and blue GaN‐based LEDs. These products should find wide use in full color display and other technologies. Promising prototype UV photodetectors have been fabricated from both SiC and GaN. In laser development, ZnSe leads the way with more sophisticated designs having further improved performance being rapidly demonstrated. If the low damage threshold of ZnSe continues to limit practical laser applications, GaN appears poised to become the semiconductor of choice for short‐wavelength lasers in optical memory and other applications. For further development of these materials to be realized, doping densities (especially p type) and ohmic contact technologies have to be improved. Economies of scale need to be realized through the development of larger SiC substrates. Improved substrate materials, ideally GaN itself, need to be aggressively pursued to further develop the GaN‐based material system and enable the fabrication of lasers. ZnSe material quality is already outstanding and now researchers must focus their attention on addressing the short lifetimes of ZnSe‐based lasers to determine whether the material is sufficiently durable for practical laser applications. The problems related to these three wide‐band‐gap semiconductor systems have moved away from materials science toward the device arena, where their technological development can rapidly be brought to maturity.

2,514 citations

Journal ArticleDOI
TL;DR: In this paper, a general review of the advances in widebandgap semiconductor photodetectors is presented, including SiC, diamond, III-nitrides and ZnS.
Abstract: Industries such as the automotive, aerospace or military, as well as environmental and biological research have promoted the development of ultraviolet (UV) photodetectors capable of operating at high temperatures and in hostile environments. UV-enhanced Si photodiodes are hence giving way to a new generation of UV detectors fabricated from wide-bandgap semiconductors, such as SiC, diamond, III-nitrides, ZnS, ZnO, or ZnSe. This paper provides a general review of latest progresses in wide-bandgap semiconductor photodetectors.

1,194 citations