scispace - formally typeset
Search or ask a question
Author

Eric W. Wong

Bio: Eric W. Wong is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Carbon nanotube & Catenane. The author has an hindex of 16, co-authored 25 publications receiving 4924 citations. Previous affiliations of Eric W. Wong include University of California, Los Angeles & California NanoSystems Institute.

Papers
More filters
Journal ArticleDOI
16 Jul 1999-Science
TL;DR: Logic gates were fabricated from an array of configurable switches, each consisting of a monolayer of redox-active rotaxanes sandwiched between metal electrodes, which provided a significant enhancement over that expected for wired-logic gates.
Abstract: Logic gates were fabricated from an array of configurable switches, each consisting of a monolayer of redox-active rotaxanes sandwiched between metal electrodes. The switches were read by monitoring current flow at reducing voltages. In the “closed” state, current flow was dominated by resonant tunneling through the electronic states of the molecules. The switches were irreversibly opened by applying an oxidizing voltage across the device. Several devices were configured together to produce AND and OR logic gates. The high and low current levels of those gates were separated by factors of 15 and 30, respectively, which is a significant enhancement over that expected for wired-logic gates.

1,553 citations

Journal ArticleDOI
18 Aug 2000-Science
TL;DR: In this paper, a solid state, electronically addressable, bistable [2]catenane-based molecular switching device was fabricated from a single monolayer of the [2]-Catenane, anchored with phospholipid counterions, and sandwiched between an n-type polycrystalline silicon bottom electrode and a metallic top electrode.
Abstract: A solid state, electronically addressable, bistable [2]catenane-based molecular switching device was fabricated from a single monolayer of the [2]catenane, anchored with phospholipid counterions, and sandwiched between an n-type polycrystalline silicon bottom electrode and a metallic top electrode. The device exhibits hysteretic (bistable) current/voltage characteristics. The switch is opened at +2 volts, closed at −2 volts, and read at ∼0.1 volt and may be recycled many times under ambient conditions. A mechanochemical mechanism for the action of the switch is presented and shown to be consistent with temperature-dependent measurements of the device operation.

1,241 citations

Journal ArticleDOI
TL;DR: Correlations between the structure and solution-phase dynamics of the molecular and supramolecular systems, the crystallographic domain structure of the monolayer film, and the room-temperature device performance characteristics are reported.
Abstract: Solid-state tunnel junction devices were fabricated from Langmuir Blodgett molecular monolayers of a bistable [2]catenane, a bistable [2]pseudorotaxane, and a single-station [2]rotaxane. All devices exhibited a (noncapacitive) hysteretic current−voltage response that switched the device between high- and low-conductivity states, although control devices exhibited no such response. Correlations between the structure and solution-phase dynamics of the molecular and supramolecular systems, the crystallographic domain structure of the monolayer film, and the room-temperature device performance characteristics are reported.

240 citations

Journal ArticleDOI
TL;DR: Modeling of these diodes as direct detectors at room temperature at 2.5 terahertz (THz) frequency indicates noise equivalent powers (NEP) potentially comparable to that of the state-of-the-art gallium arsenide solid-state Schottky diodES, in the range of 10(-13) W/ radical Hz.
Abstract: We have demonstrated Schottky diodes using semiconducting single-walled nanotubes (s-SWNTs) with titanium Schottky and platinum Ohmic contacts for high-frequency applications. The diodes are fabricated using angled evaporation of dissimilar metal contacts over an s-SWNT. The devices demonstrate rectifying behavior with large reverse bias breakdown voltages of greater than 15 V. To decrease the series resistance, multiple SWNTs are grown in parallel in a single device, and the metallic tubes are burnt-out selectively. At low biases these diodes showed ideality factors in the range of 1.5 to 1.9. Modeling of these diodes as direct detectors at room temperature at 2.5 terahertz (THz) frequency indicates noise equivalent powers (NEP) potentially comparable to that of the state-of-the-art gallium arsenide solid-state Schottky diodes, in the range of 10-13 W(square root)xHz.

207 citations


Cited by
More filters
Journal ArticleDOI
01 May 2008-Nature
TL;DR: It is shown, using a simple analytical example, that memristance arises naturally in nanoscale systems in which solid-state electronic and ionic transport are coupled under an external bias voltage.
Abstract: Anyone who ever took an electronics laboratory class will be familiar with the fundamental passive circuit elements: the resistor, the capacitor and the inductor. However, in 1971 Leon Chua reasoned from symmetry arguments that there should be a fourth fundamental element, which he called a memristor (short for memory resistor). Although he showed that such an element has many interesting and valuable circuit properties, until now no one has presented either a useful physical model or an example of a memristor. Here we show, using a simple analytical example, that memristance arises naturally in nanoscale systems in which solid-state electronic and ionic transport are coupled under an external bias voltage. These results serve as the foundation for understanding a wide range of hysteretic current-voltage behaviour observed in many nanoscale electronic devices that involve the motion of charged atomic or molecular species, in particular certain titanium dioxide cross-point switches.

8,971 citations

Journal ArticleDOI
Xiaolin Li1, Xinran Wang1, Li Zhang1, Sangwon Lee1, Hongjie Dai1 
29 Feb 2008-Science
TL;DR: A chemical route to produce graphene nanoribbons with width below 10 nanometers was developed, as well as single ribbons with varying widths along their lengths or containing lattice-defined graphene junctions for potential molecular electronics.
Abstract: We developed a chemical route to produce graphene nanoribbons (GNR) with width below 10 nanometers, as well as single ribbons with varying widths along their lengths or containing lattice-defined graphene junctions for potential molecular electronics. The GNRs were solution-phase-derived, stably suspended in solvents with noncovalent polymer functionalization, and exhibited ultrasmooth edges with possibly well-defined zigzag or armchair-edge structures. Electrical transport experiments showed that, unlike single-walled carbon nanotubes, all of the sub-10-nanometer GNRs produced were semiconductors and afforded graphene field effect transistors with on-off ratios of about 10(7) at room temperature.

4,579 citations

Journal ArticleDOI
TL;DR: A coarse-grained classification into primarily thermal, electrical or ion-migration-induced switching mechanisms into metal-insulator-metal systems, and a brief look into molecular switching systems is taken.
Abstract: Many metal–insulator–metal systems show electrically induced resistive switching effects and have therefore been proposed as the basis for future non-volatile memories. They combine the advantages of Flash and DRAM (dynamic random access memories) while avoiding their drawbacks, and they might be highly scalable. Here we propose a coarse-grained classification into primarily thermal, electrical or ion-migration-induced switching mechanisms. The ion-migration effects are coupled to redox processes which cause the change in resistance. They are subdivided into cation-migration cells, based on the electrochemical growth and dissolution of metallic filaments, and anion-migration cells, typically realized with transition metal oxides as the insulator, in which electronically conducting paths of sub-oxides are formed and removed by local redox processes. From this insight, we take a brief look into molecular switching systems. Finally, we discuss chip architecture and scaling issues.

4,547 citations

Journal ArticleDOI
TL;DR: Nanotechnology is a multidisciplinary field, which covers a vast and diverse array of devices derived from engineering, biology, physics and chemistry that can provide essential breakthroughs in the fight against cancer.
Abstract: Nanotechnology is a multidisciplinary field, which covers a vast and diverse array of devices derived from engineering, biology, physics and chemistry. These devices include nanovectors for the targeted delivery of anticancer drugs and imaging contrast agents. Nanowires and nanocantilever arrays are among the leading approaches under development for the early detection of precancerous and malignant lesions from biological fluids. These and other nanodevices can provide essential breakthroughs in the fight against cancer.

4,241 citations

Journal ArticleDOI
TL;DR: Department of Materials Science, University of Patras, Greece, Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, and Dipartimento di Scienze Farmaceutiche, Universita di Trieste, Piazzale Europa 1, 34127 Triesteadays.
Abstract: Department of Materials Science, University of Patras, 26504 Rio Patras, Greece, Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vass. Constantinou Avenue, 116 35 Athens, Greece, Institut de Biologie Moleculaire et Cellulaire, UPR9021 CNRS, Immunologie et Chimie Therapeutiques, 67084 Strasbourg, France, and Dipartimento di Scienze Farmaceutiche, Universita di Trieste, Piazzale Europa 1, 34127 Trieste, Italy

3,886 citations