scispace - formally typeset
Search or ask a question
Author

Erich A. Nigg

Bio: Erich A. Nigg is an academic researcher from University of Basel. The author has contributed to research in topics: Mitosis & Centrosome. The author has an hindex of 90, co-authored 302 publications receiving 52056 citations. Previous affiliations of Erich A. Nigg include European Bioinformatics Institute & University of Leicester.


Papers
More filters
Journal ArticleDOI
Erich A. Nigg1
TL;DR: An overview of the many mitotic kinases that regulate cell division and the fidelity of chromosome transmission is given.
Abstract: Mitosis and cytokinesis are undoubtedly the most spectacular parts of the cell cycle. Errors in the choreography of these processes can lead to aneuploidy or genetic instability, fostering cell death or disease. Here, I give an overview of the many mitotic kinases that regulate cell division and the fidelity of chromosome transmission.

1,540 citations

Journal ArticleDOI
TL;DR: High-resolution mass spectrometry–based proteomics was applied to investigate the proteome and phosphoproteome of the human cell cycle on a global scale and quantified 6027 proteins and 20,443 unique phosphorylation sites and their dynamics, finding that nuclear proteins and proteins involved in regulating metabolic processes have high phosphorylated site occupancy in mitosis, suggesting that these proteins may be inactivated by phosphorylate in mitotic cells.
Abstract: Eukaryotic cells replicate by a complex series of evolutionarily conserved events that are tightly regulated at defined stages of the cell division cycle. Progression through this cycle involves a large number of dedicated protein complexes and signaling pathways, and deregulation of this process is implicated in tumorigenesis. We applied high-resolution mass spectrometry-based proteomics to investigate the proteome and phosphoproteome of the human cell cycle on a global scale and quantified 6027 proteins and 20,443 unique phosphorylation sites and their dynamics. Co-regulated proteins and phosphorylation sites were grouped according to their cell cycle kinetics and compared to publicly available messenger RNA microarray data. Most detected phosphorylation sites and more than 20% of all quantified proteins showed substantial regulation, mainly in mitotic cells. Kinase-motif analysis revealed global activation during S phase of the DNA damage response network, which was mediated by phosphorylation by ATM or ATR or DNA-dependent protein kinases. We determined site-specific stoichiometry of more than 5000 sites and found that most of the up-regulated sites phosphorylated by cyclin-dependent kinase 1 (CDK1) or CDK2 were almost fully phosphorylated in mitotic cells. In particular, nuclear proteins and proteins involved in regulating metabolic processes have high phosphorylation site occupancy in mitosis. This suggests that these proteins may be inactivated by phosphorylation in mitotic cells.

1,447 citations

Journal ArticleDOI
04 Dec 2003-Nature
TL;DR: A mass-spectrometry-based proteomic analysis of human centrosomes in the interphase of the cell cycle by quantitatively profiling hundreds of proteins across several centrifugation fractions identified and validated 23 novel components and identified 41 likely candidates as well as the vast majority of the known centrosomal proteins in a large background of nonspecific proteins.
Abstract: The centrosome is the major microtubule-organizing centre of animal cells and through its influence on the cytoskeleton is involved in cell shape, polarity and motility. It also has a crucial function in cell division because it determines the poles of the mitotic spindle that segregates duplicated chromosomes between dividing cells. Despite the importance of this organelle to cell biology and more than 100 years of study, many aspects of its function remain enigmatic and its structure and composition are still largely unknown. We performed a mass-spectrometry-based proteomic analysis of human centrosomes in the interphase of the cell cycle by quantitatively profiling hundreds of proteins across several centrifugation fractions. True centrosomal proteins were revealed by both correlation with already known centrosomal proteins and in vivo localization. We identified and validated 23 novel components and identified 41 likely candidates as well as the vast majority of the known centrosomal proteins in a large background of nonspecific proteins. Protein correlation profiling permits the analysis of any multiprotein complex that can be enriched by fractionation but not purified to homogeneity.

1,312 citations

Journal ArticleDOI
10 Feb 1989-Cell
TL;DR: These unexpected results suggest a role for these major nucleolar proteins in the nucleocytoplasmic transport of ribosomal components and suggest that transient exposure of shuttling proteins to the cy toplasm may provide a mechanism for cytop lasmic regulation of nuclear activities.

1,082 citations

Journal ArticleDOI
TL;DR: Polo-like kinases are increasingly recognized as key regulators of mitosis, meiosis and cytokinesis and their targeting to different cellular structures through interactions with phosphorylated docking proteins is uncovered.
Abstract: Polo-like kinases (Plks) are increasingly recognized as key regulators of mitosis, meiosis and cytokinesis. In agreement with a broad range of proposed functions during cell division, Plks are subject to complex temporal and spatial control. Recent findings are uncovering the mechanisms of Plk regulation, notably their targeting to different cellular structures through interactions with phosphorylated docking proteins. Moreover, information is emerging on the substrate specificity of Plks and the role of individual substrates in M-phase progression.

1,060 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review discusses recent information on functions and mechanisms of the ubiquitin system and focuses on what the authors know, and would like to know, about the mode of action of ubi...
Abstract: The selective degradation of many short-lived proteins in eukaryotic cells is carried out by the ubiquitin system. In this pathway, proteins are targeted for degradation by covalent ligation to ubiquitin, a highly conserved small protein. Ubiquitin-mediated degradation of regulatory proteins plays important roles in the control of numerous processes, including cell-cycle progression, signal transduction, transcriptional regulation, receptor down-regulation, and endocytosis. The ubiquitin system has been implicated in the immune response, development, and programmed cell death. Abnormalities in ubiquitin-mediated processes have been shown to cause pathological conditions, including malignant transformation. In this review we discuss recent information on functions and mechanisms of the ubiquitin system. Since the selectivity of protein degradation is determined mainly at the stage of ligation to ubiquitin, special attention is focused on what we know, and would like to know, about the mode of action of ubiquitin-protein ligation systems and about signals in proteins recognized by these systems.

7,888 citations

Journal ArticleDOI
06 Dec 1996-Science
TL;DR: Genetic alterations affecting p16INK4a and cyclin D1, proteins that govern phosphorylation of the retinoblastoma protein and control exit from the G1 phase of the cell cycle, are so frequent in human cancers that inactivation of this pathway may well be necessary for tumor development.
Abstract: Uncontrolled cell proliferation is the hallmark of cancer, and tumor cells have typically acquired damage to genes that directly regulate their cell cycles. Genetic alterations affecting p16(INK4a) and cyclin D1, proteins that govern phosphorylation of the retinoblastoma protein (RB) and control exit from the G1 phase of the cell cycle, are so frequent in human cancers that inactivation of this pathway may well be necessary for tumor development. Like the tumor suppressor protein p53, components of this "RB pathway," although not essential for the cell cycle per se, may participate in checkpoint functions that regulate homeostatic tissue renewal throughout life.

5,509 citations

Journal ArticleDOI
TL;DR: The Perseus software platform was developed to support biological and biomedical researchers in interpreting protein quantification, interaction and post-translational modification data and it is anticipated that Perseus's arsenal of algorithms and its intuitive usability will empower interdisciplinary analysis of complex large data sets.
Abstract: A main bottleneck in proteomics is the downstream biological analysis of highly multivariate quantitative protein abundance data generated using mass-spectrometry-based analysis. We developed the Perseus software platform (http://www.perseus-framework.org) to support biological and biomedical researchers in interpreting protein quantification, interaction and post-translational modification data. Perseus contains a comprehensive portfolio of statistical tools for high-dimensional omics data analysis covering normalization, pattern recognition, time-series analysis, cross-omics comparisons and multiple-hypothesis testing. A machine learning module supports the classification and validation of patient groups for diagnosis and prognosis, and it also detects predictive protein signatures. Central to Perseus is a user-friendly, interactive workflow environment that provides complete documentation of computational methods used in a publication. All activities in Perseus are realized as plugins, and users can extend the software by programming their own, which can be shared through a plugin store. We anticipate that Perseus's arsenal of algorithms and its intuitive usability will empower interdisciplinary analysis of complex large data sets.

5,165 citations

Journal ArticleDOI
05 May 1995-Cell
TL;DR: The main role of pRB is to act as a signal transducer connecting the cell cycle clock with the transcriptional machinery, allowing the clock to control the expression of banks of genes that mediate advance of the cell through a critical phase of its growth cycle.

4,904 citations

Journal ArticleDOI
TL;DR: The known histone modifications are described, where they are found genomically and discussed and some of their functional consequences are discussed, concentrating mostly on transcription where the majority of characterisation has taken place.
Abstract: Chromatin is not an inert structure, but rather an instructive DNA scaffold that can respond to external cues to regulate the many uses of DNA. A principle component of chromatin that plays a key role in this regulation is the modification of histones. There is an ever-growing list of these modifications and the complexity of their action is only just beginning to be understood. However, it is clear that histone modifications play fundamental roles in most biological processes that are involved in the manipulation and expression of DNA. Here, we describe the known histone modifications, define where they are found genomically and discuss some of their functional consequences, concentrating mostly on transcription where the majority of characterisation has taken place.

4,536 citations