scispace - formally typeset
Search or ask a question
Author

Erich Wiezorrek

Bio: Erich Wiezorrek is an academic researcher from Max Planck Society. The author has contributed to research in topics: Stars & Interferometry. The author has an hindex of 26, co-authored 91 publications receiving 6838 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The Photodetector Array Camera and Spectrometer (PACS) as discussed by the authors is one of the three science instruments on ESA's far infrared and sub-mil- limetre observatory.
Abstract: The Photodetector Array Camera and Spectrometer (PACS) is one of the three science instruments on ESA's far infrared and submil- limetre observatory. It employs two Ge:Ga photoconductor arrays (stressed and unstressed) with 16 × 25 pixels, each, and two filled silicon bolometer arrays with 16 × 32 and 32 × 64 pixels, respectively, to perform integral-field spectroscopy and imaging photom- etry in the 60−210 μm wavelength regime. In photometry mode, it simultaneously images two bands, 60−85 μ mo r 85−125 μ ma nd 125−210 μm, over a field of view of ∼1.75 � × 3.5 � , with close to Nyquist beam sampling in each band. In spectroscopy mode, it images afi eld of 47 �� × 47 �� , resolved into 5 × 5 pixels, with an instantaneous spectral coverage of ∼ 1500 km s −1 and a spectral resolution of ∼175 km s −1 . We summarise the design of the instrument, describe observing modes, calibration, and data analysis methods, and present our current assessment of the in-orbit performance of the instrument based on the performance verification tests. PACS is fully operational, and the achieved performance is close to or better than the pre-launch predictions.

2,645 citations

Journal ArticleDOI
Roberto Abuter1, António Amorim2, Narsireddy Anugu3, M. Bauböck4, Myriam Benisty5, Jean-Philippe Berger1, Jean-Philippe Berger5, Nicolas Blind6, H. Bonnet1, Wolfgang Brandner4, A. Buron4, C. Collin7, F. Chapron7, Yann Clénet7, V. dCoudé u Foresto7, P. T. de Zeeuw8, P. T. de Zeeuw4, Casey Deen4, F. Delplancke-Ströbele1, Roderick Dembet1, Roderick Dembet7, Jason Dexter4, Gilles Duvert5, Andreas Eckart9, Andreas Eckart4, Frank Eisenhauer4, Gert Finger1, N. M. Förster Schreiber4, P. Fédou7, Paulo J. V. Garcia3, Paulo J. V. Garcia2, R. Garcia Lopez10, R. Garcia Lopez4, Feng Gao4, Eric Gendron7, Reinhard Genzel11, Reinhard Genzel4, Stefan Gillessen4, Paulo Gordo2, Maryam Habibi4, Xavier Haubois1, M. Haug1, F. Haußmann4, Th. Henning4, Stefan Hippler4, Matthew Horrobin9, Z. Hubert7, Z. Hubert4, Norbert Hubin1, A. Jimenez Rosales4, Lieselotte Jochum1, Laurent Jocou5, Andreas Kaufer1, S. Kellner4, Sarah Kendrew4, Sarah Kendrew12, Pierre Kervella7, Yitping Kok4, Martin Kulas4, Sylvestre Lacour7, V. Lapeyrère7, Bernard Lazareff5, J.-B. Le Bouquin5, Pierre Léna7, Magdalena Lippa4, Rainer Lenzen4, Antoine Mérand1, E. Müler4, E. Müler1, Udo Neumann4, Thomas Ott4, L. Palanca1, Thibaut Paumard7, Luca Pasquini1, Karine Perraut5, Guy Perrin7, Oliver Pfuhl4, P. M. Plewa4, Sebastian Rabien4, A. Ramirez1, Joany Andreina Manjarres Ramos4, C. Rau4, G. Rodríguez-Coira7, R.-R. Rohloff4, Gérard Rousset7, J. Sanchez-Bermudez1, J. Sanchez-Bermudez4, Silvia Scheithauer4, Markus Schöller1, N. Schuler1, Jason Spyromilio1, Odele Straub7, Christian Straubmeier9, Eckhard Sturm4, Linda J. Tacconi4, Konrad R. W. Tristram1, Frederic H. Vincent7, S. von Fellenberg4, Imke Wank9, Idel Waisberg4, Felix Widmann4, Ekkehard Wieprecht4, M. Wiest9, Erich Wiezorrek4, Julien Woillez1, S. Yazici9, S. Yazici4, D. Ziegler7, Gérard Zins1 
TL;DR: Eisenhauer et al. as mentioned in this paper detect the combined gravitational redshift and relativistic transverse Doppler effect for S2 of z = Δλ / λ ≈ 200 km s−1/c with different statistical analysis methods.
Abstract: The highly elliptical, 16-year-period orbit of the star S2 around the massive black hole candidate Sgr A✻ is a sensitive probe of the gravitational field in the Galactic centre. Near pericentre at 120 AU ≈ 1400 Schwarzschild radii, the star has an orbital speed of ≈7650 km s−1, such that the first-order effects of Special and General Relativity have now become detectable with current capabilities. Over the past 26 years, we have monitored the radial velocity and motion on the sky of S2, mainly with the SINFONI and NACO adaptive optics instruments on the ESO Very Large Telescope, and since 2016 and leading up to the pericentre approach in May 2018, with the four-telescope interferometric beam-combiner instrument GRAVITY. From data up to and including pericentre, we robustly detect the combined gravitational redshift and relativistic transverse Doppler effect for S2 of z = Δλ / λ ≈ 200 km s−1/c with different statistical analysis methods. When parameterising the post-Newtonian contribution from these effects by a factor f , with f = 0 and f = 1 corresponding to the Newtonian and general relativistic limits, respectively, we find from posterior fitting with different weighting schemes f = 0.90 ± 0.09|stat ± 0.15|sys. The S2 data are inconsistent with pure Newtonian dynamics.Key words: Galaxy: center / gravitation / black hole physics⋆ This paper is dedicated to Tal Alexander, who passed away about a week before the pericentre approach of S2.⋆⋆ GRAVITY is developed in a collaboration by the Max Planck Institute for extraterrestrial Physics, LESIA of Paris Observatory/CNRS/Sorbonne Universite/Univ. Paris Diderot and IPAG of Universite Grenoble Alpes/CNRS, the Max Planck Institute for Astronomy, the University of Cologne, the CENTRA – Centro de Astrofisica e Gravitacao, and the European Southern Observatory.⋆⋆⋆ Corresponding author: F. Eisenhauer e-mail: eisenhau@mpe.mpg.de

693 citations

Journal ArticleDOI
R. Abuter, António Amorim, Narsireddy Anugu, M. Bauböck, Myriam Benisty, Jean-Philippe Berger, Nicolas Blind, H. Bonnet, Wolfgang Brandner, A. Buron, C. Collin, F. Chapron, Yann Clénet, V. Coudé du Foresto, P. T. de Zeeuw, Casey Deen, F. Delplancke-Ströbele, Roderick Dembet, Jason Dexter, Gilles Duvert, Andreas Eckart, Frank Eisenhauer, G. Finger, N. M. Förster Schreiber, P. Fédou, Paulo J. V. Garcia, R. J. García López, Feng Gao, Eric Gendron, Reinhard Genzel, Stefan Gillessen, Paulo Gordo, Maryam Habibi, Xavier Haubois, M. Haug, F. Haußmann, Th. Henning, Stefan Hippler, Matthew Horrobin, Z. Hubert, N. Hubin, A. Jimenez Rosales, Lieselotte Jochum, Laurent Jocou, Andreas Kaufer, S. Kellner, Sarah Kendrew, Pierre Kervella, Yitping Kok, Martin Kulas, Sylvestre Lacour, Vincent Lapeyrere, B. Lazareff, J.-B. Le Bouquin, Pierre Léna, Magdalena Lippa, Rainer Lenzen, Antoine Mérand, Ewald Müller, Udo Neumann, Thomas Ott, L. Palanca, Thibaut Paumard, Luca Pasquini, Karine Perraut, Guy Perrin, O. Pfuhl, P. M. Plewa, Sebastian Rabien, Andres J. Ramirez, Juan-Luis Ramos, C. Rau, G. Rodríguez-Coira, R.-R. Rohloff, G. Rousset, J. Sanchez-Bermudez, Silvia Scheithauer, Markus Schöller, N. Schuler, Jason Spyromilio, Odele Straub, Christian Straubmeier, Eckhard Sturm, Linda J. Tacconi, Konrad R. W. Tristram, F. H. Vincent, S. von Fellenberg, Imke Wank, Idel Waisberg, Felix Widmann, Ekkehard Wieprecht, M. Wiest, Erich Wiezorrek, Julien Woillez, Senol Yazici, D. Ziegler, Gérard Zins 
TL;DR: In this article, the authors detect the combined gravitational redshift and relativistic transverse Doppler effect for S2 of z ~ 200 km/s / c with different statistical analysis methods.
Abstract: The highly elliptical, 16-year-period orbit of the star S2 around the massive black hole candidate Sgr A* is a sensitive probe of the gravitational field in the Galactic centre. Near pericentre at 120 AU, ~1400 Schwarzschild radii, the star has an orbital speed of ~7650 km/s, such that the first-order effects of Special and General Relativity have now become detectable with current capabilities. Over the past 26 years, we have monitored the radial velocity and motion on the sky of S2, mainly with the SINFONI and NACO adaptive optics instruments on the ESO Very Large Telescope, and since 2016 and leading up to the pericentre approach in May 2018, with the four-telescope interferometric beam-combiner instrument GRAVITY. From data up to and including pericentre, we robustly detect the combined gravitational redshift and relativistic transverse Doppler effect for S2 of z ~ 200 km/s / c with different statistical analysis methods. When parameterising the post-Newtonian contribution from these effects by a factor f, with f = 0 and f = 1 corresponding to the Newtonian and general relativistic limits, respectively, we find from posterior fitting with different weighting schemes f = 0.90 +/- 0.09 (stat) +\- 0.15 (sys). The S2 data are inconsistent with pure Newtonian dynamics.

639 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented a 0.16% precise and 0.27% accurate determination of R 0, the distance to the Galactic center using the star S2 on its 16-year orbit around the massive black hole Sgr A* that they followed astrometrically and spectroscopically for 27 years.
Abstract: We present a 0.16% precise and 0.27% accurate determination of R 0 , the distance to the Galactic center. Our measurement uses the star S2 on its 16-year orbit around the massive black hole Sgr A* that we followed astrometrically and spectroscopically for 27 years. Since 2017, we added near-infrared interferometry with the VLTI beam combiner GRAVITY, yielding a direct measurement of the separation vector between S2 and Sgr A* with an accuracy as good as 20 μ as in the best cases. S2 passed the pericenter of its highly eccentric orbit in May 2018, and we followed the passage with dense sampling throughout the year. Together with our spectroscopy, in the best cases with an error of 7 km s−1 , this yields a geometric distance estimate of R 0 = 8178 ± 13stat. ± 22sys. pc. This work updates our previous publication, in which we reported the first detection of the gravitational redshift in the S2 data. The redshift term is now detected with a significance level of 20σ with f redshift = 1.04 ± 0.05.

507 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented a 0.16% precise and 0.27% accurate determination of R0, the distance to the Galactic Center using the star S2 on its 16-year orbit around the massive black hole Sgr A* that they followed astrometrically and spectroscopically for 27 years.
Abstract: We present a 0.16% precise and 0.27% accurate determination of R0, the distance to the Galactic Center. Our measurement uses the star S2 on its 16-year orbit around the massive black hole Sgr A* that we followed astrometrically and spectroscopically for 27 years. Since 2017, we added near-infrared interferometry with the VLTI beam combiner GRAVITY, yielding a direct measurement of the separation vector between S2 and Sgr A* with an accuracy as good as 20 micro-arcsec in the best cases. S2 passed the pericenter of its highly eccentric orbit in May 2018, and we followed the passage with dense sampling throughout the year. Together with our spectroscopy, in the best cases with an error of 7 km/s, this yields a geometric distance estimate: R0 = 8178 +- 13(stat.) +- 22(sys.) pc. This work updates our previous publication in which we reported the first detection of the gravitational redshift in the S2 data. The redshift term is now detected with a significance level of 20 sigma with f_redshift = 1.04 +- 0.05.

479 citations


Cited by
More filters
Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
TL;DR: Herschel was launched on 14 May 2009, and is now an operational ESA space observatory o ering unprecedented observational capabilities in the far-infrared and sub-millimetre spectral range 55 671 m.
Abstract: Herschel was launched on 14 May 2009, and is now an operational ESA space observatory o ering unprecedented observational capabilities in the far-infrared and submillimetre spectral range 55 671 m. Herschel carries a 3.5 metre diameter passively cooled Cassegrain telescope, which is the largest of its kind and utilises a novel silicon carbide technology. The science payload comprises three instruments: two direct detection cameras/medium resolution spectrometers, PACS and SPIRE, and a very high-resolution heterodyne spectrometer, HIFI, whose focal plane units are housed inside a superfluid helium cryostat. Herschel is an observatory facility operated in partnership among ESA, the instrument consortia, and NASA. The mission lifetime is determined by the cryostat hold time. Nominally approximately 20,000 hours will be available for astronomy, 32% is guaranteed time and the remainder is open to the worldwide general astronomical community through a standard competitive proposal procedure.

3,359 citations

Journal ArticleDOI
TL;DR: The Photodetector Array Camera and Spectrometer (PACS) as discussed by the authors is one of the three science instruments on ESA's far infrared and sub-mil- limetre observatory.
Abstract: The Photodetector Array Camera and Spectrometer (PACS) is one of the three science instruments on ESA's far infrared and submil- limetre observatory. It employs two Ge:Ga photoconductor arrays (stressed and unstressed) with 16 × 25 pixels, each, and two filled silicon bolometer arrays with 16 × 32 and 32 × 64 pixels, respectively, to perform integral-field spectroscopy and imaging photom- etry in the 60−210 μm wavelength regime. In photometry mode, it simultaneously images two bands, 60−85 μ mo r 85−125 μ ma nd 125−210 μm, over a field of view of ∼1.75 � × 3.5 � , with close to Nyquist beam sampling in each band. In spectroscopy mode, it images afi eld of 47 �� × 47 �� , resolved into 5 × 5 pixels, with an instantaneous spectral coverage of ∼ 1500 km s −1 and a spectral resolution of ∼175 km s −1 . We summarise the design of the instrument, describe observing modes, calibration, and data analysis methods, and present our current assessment of the in-orbit performance of the instrument based on the performance verification tests. PACS is fully operational, and the achieved performance is close to or better than the pre-launch predictions.

2,645 citations

Journal ArticleDOI
Kazunori Akiyama, Antxon Alberdi1, Walter Alef2, Keiichi Asada3  +403 moreInstitutions (82)
TL;DR: In this article, the Event Horizon Telescope was used to reconstruct event-horizon-scale images of the supermassive black hole candidate in the center of the giant elliptical galaxy M87.
Abstract: When surrounded by a transparent emission region, black holes are expected to reveal a dark shadow caused by gravitational light bending and photon capture at the event horizon. To image and study this phenomenon, we have assembled the Event Horizon Telescope, a global very long baseline interferometry array observing at a wavelength of 1.3 mm. This allows us to reconstruct event-horizon-scale images of the supermassive black hole candidate in the center of the giant elliptical galaxy M87. We have resolved the central compact radio source as an asymmetric bright emission ring with a diameter of 42 +/- 3 mu as, which is circular and encompasses a central depression in brightness with a flux ratio greater than or similar to 10: 1. The emission ring is recovered using different calibration and imaging schemes, with its diameter and width remaining stable over four different observations carried out in different days. Overall, the observed image is consistent with expectations for the shadow of a Kerr black hole as predicted by general relativity. The asymmetry in brightness in the ring can be explained in terms of relativistic beaming of the emission from a plasma rotating close to the speed of light around a black hole. We compare our images to an extensive library of ray-traced general-relativistic magnetohydrodynamic simulations of black holes and derive a central mass of M = (6.5 +/- 0.7) x 10(9) M-circle dot. Our radio-wave observations thus provide powerful evidence for the presence of supermassive black holes in centers of galaxies and as the central engines of active galactic nuclei. They also present a new tool to explore gravity in its most extreme limit and on a mass scale that was so far not accessible.

2,589 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies.
Abstract: We review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies. Methods of measuring gas contents and star-formation rates are discussed, and updated prescriptions for calculating star-formation rates are provided. We review relations between star formation and gas on scales ranging from entire galaxies to individual molecular clouds.

2,525 citations