scispace - formally typeset
Search or ask a question
Author

Erik Bylow

Bio: Erik Bylow is an academic researcher from Lund University. The author has contributed to research in topics: 3D reconstruction & Low-rank approximation. The author has an hindex of 7, co-authored 16 publications receiving 388 citations. Previous affiliations of Erik Bylow include Technische Universität München.

Papers
More filters
Proceedings ArticleDOI
23 Jun 2013
TL;DR: This paper presents a novel method for real-time camera tracking and 3D reconstruction of static indoor environments using an RGB-D sensor that is more accurate and robust than the iterated closest point algorithm (ICP) used by KinectFusion, and yields often a comparable accuracy at much higher speed to feature-based bundle adjustment methods such asRGB-D SLAM.
Abstract: The ability to quickly acquire 3D models is an essential capability needed in many disciplines including robotics, computer vision, geodesy, and architecture. In this paper we present a novel method for real-time camera tracking and 3D reconstruction of static indoor environments using an RGB-D sensor. We show that by representing the geometry with a signed distance function (SDF), the camera pose can be efficiently estimated by directly minimizing the error of the depth images on the SDF. As the SDF contains the distances to the surface for each voxel, the pose optimization can be carried out extremely fast. By iteratively estimating the camera poses and integrating the RGB-D data in the voxel grid, a detailed reconstruction of an indoor environment can be achieved. We present reconstructions of several rooms using a hand-held sensor and from onboard an autonomous quadrocopter. Our extensive evaluation on publicly available benchmark data shows that our approach is more accurate and robust than the iterated closest point algorithm (ICP) used by KinectFusion, and yields often a comparable accuracy at much higher speed to feature-based bundle adjustment methods such as RGB-D SLAM for up to medium-sized scenes.

234 citations

Book ChapterDOI
03 Sep 2013
TL;DR: This paper describes a novel approach to create 3D miniatures of persons using a Kinect sensor and a 3D color printer that represents the model with a signed distance function which is updated and visualized as the images are captured for immediate feedback.
Abstract: In this paper, we describe a novel approach to create 3D miniatures of persons using a Kinect sensor and a 3D color printer. To achieve this, we acquire color and depth images while the person is rotating on a swivel chair. We represent the model with a signed distance function which is updated and visualized as the images are captured for immediate feedback. Our approach automatically fills small holes that stem from self-occlusions. To optimize the model for 3D printing, we extract a watertight but hollow shell to minimize the production costs. In extensive experiments, we evaluate the quality of the obtained models as a function of the rotation speed, the non-rigid deformations of a person during recording, the camera pose, and the resulting self-occlusions. Finally, we present a large number of reconstructions and fabricated figures to demonstrate the validity of our approach.

69 citations

Journal ArticleDOI
TL;DR: The system provides live feedback of the acquired 3D model to the user and enables accurate position control of the quadrocopter, so that it can automatically follow a pre-defined flight pattern.
Abstract: In this paper, we present an approach for acquiring textured 3D models of room-sized indoor spaces using a quadrocopter. Such room models are for example useful for architects and interior designers as well as for factory planners and construction man- agers. The model is internally represented by a signed distance function (SDF) and the SDF is used to directly track the camera with respect to the model. Our solution enables accurate position control of the quadrocopter, so that it can automatically follow a pre-defined flight pattern. Our system provides live feedback of the acquired 3D model to the user. The final model consisting of a textured 3D triangle mesh can be saved in several standard CAD file formats. (Less)

28 citations

01 Jan 2014
TL;DR: In this paper, a convex relaxation is proposed to solve the rank approximation problem on matrices where the given measurements can be organized into overlapping blocks without missing data, and the algorithm is computationally efficient and has applied to several classical problems including structure from motion and linear shape basis estimation.
Abstract: The problem of finding a low rank approximation of a given measurement matrix is of key interest in computer vision. If all the elements of the measurement matrix are available, the problem can be solved using factorization. However, in the case of missing data no satisfactory solution exists. Recent approaches replace the rank term with the weaker (but convex) nuclear norm. In this paper we show that this heuristic works poorly on problems where the locations of the missing entries are highly correlated and structured which is a common situation in many applications. Our main contribution is the derivation of a much stronger convex relaxation that takes into account not only the rank function but also the data. We propose an algorithm which uses this relaxation to solve the rank approximation problem on matrices where the given measurements can be organized into overlapping blocks without missing data. The algorithm is computationally efficient and we have applied it to several classical problems including structure from motion and linear shape basis estimation. We demonstrate on both real and synthetic data that it outperforms state-of-the-art alternatives. (1) (Less)

26 citations

Book ChapterDOI
06 Sep 2014
TL;DR: This paper shows that the heuristic replacing the rank term with the weaker nuclear norm works poorly on problems where the locations of the missing entries are highly correlated and structured which is a common situation in many applications.
Abstract: The problem of finding a low rank approximation of a given measurement matrix is of key interest in computer vision. If all the elements of the measurement matrix are available, the problem can be solved using factorization. However, in the case of missing data no satisfactory solution exists. Recent approaches replace the rank term with the weaker (but convex) nuclear norm. In this paper we show that this heuristic works poorly on problems where the locations of the missing entries are highly correlated and structured which is a common situation in many applications.

22 citations


Cited by
More filters
Book ChapterDOI
08 Oct 2016
TL;DR: An algorithm for fast global registration of partially overlapping 3D surfaces that provides the accuracy achieved by well-initialized local refinement algorithms, without requiring an initialization and at lower computational cost.
Abstract: We present an algorithm for fast global registration of partially overlapping 3D surfaces. The algorithm operates on candidate matches that cover the surfaces. A single objective is optimized to align the surfaces and disable false matches. The objective is defined densely over the surfaces and the optimization achieves tight alignment with no initialization. No correspondence updates or closest-point queries are performed in the inner loop. An extension of the algorithm can perform joint global registration of many partially overlapping surfaces. Extensive experiments demonstrate that the presented approach matches or exceeds the accuracy of state-of-the-art global registration pipelines, while being at least an order of magnitude faster. Remarkably, the presented approach is also faster than local refinement algorithms such as ICP. It provides the accuracy achieved by well-initialized local refinement algorithms, without requiring an initialization and at lower computational cost.

667 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: An approach to indoor scene reconstruction from RGB-D video to combine geometric registration of scene fragments with robust global optimization based on line processes that substantially increases the accuracy of reconstructed scene models.
Abstract: We present an approach to indoor scene reconstruction from RGB-D video. The key idea is to combine geometric registration of scene fragments with robust global optimization based on line processes. Geometric registration is error-prone due to sensor noise, which leads to aliasing of geometric detail and inability to disambiguate different surfaces in the scene. The presented optimization approach disables erroneous geometric alignments even when they significantly outnumber correct ones. Experimental results demonstrate that the presented approach substantially increases the accuracy of reconstructed scene models.

543 citations

Journal ArticleDOI
TL;DR: In this article, a volumetric fusion-based surface reconstruction system for real-time SLAM is presented. But the system is limited to a single RGB-D sensor.
Abstract: We present a new simultaneous localization and mapping SLAM system capable of producing high-quality globally consistent surface reconstructions over hundreds of meters in real time with only a low-cost commodity RGB-D sensor. By using a fused volumetric surface reconstruction we achieve a much higher quality map over what would be achieved using raw RGB-D point clouds. In this paper we highlight three key techniques associated with applying a volumetric fusion-based mapping system to the SLAM problem in real time. First, the use of a GPU-based 3D cyclical buffer trick to efficiently extend dense every-frame volumetric fusion of depth maps to function over an unbounded spatial region. Second, overcoming camera pose estimation limitations in a wide variety of environments by combining both dense geometric and photometric camera pose constraints. Third, efficiently updating the dense map according to place recognition and subsequent loop closure constraints by the use of an 'as-rigid-as-possible' space deformation. We present results on a wide variety of aspects of the system and show through evaluation on de facto standard RGB-D benchmarks that our system performs strongly in terms of trajectory estimation, map quality and computational performance in comparison to other state-of-the-art systems.

381 citations

01 Dec 2014
TL;DR: This paper presents a new simultaneous localization and mapping (SLAM) system capable of producing high-quality globally consistent surface reconstructions over hundreds of meters in real time with only a low-cost commodity RGB-D sensor and shows that the system performs strongly in terms of trajectory estimation, map quality and computational performance in comparison to other state-of-the-art systems.
Abstract: We present a new simultaneous localization and mapping SLAM system capable of producing high-quality globally consistent surface reconstructions over hundreds of meters in real time with only a low-cost commodity RGB-D sensor. By using a fused volumetric surface reconstruction we achieve a much higher quality map over what would be achieved using raw RGB-D point clouds. In this paper we highlight three key techniques associated with applying a volumetric fusion-based mapping system to the SLAM problem in real time. First, the use of a GPU-based 3D cyclical buffer trick to efficiently extend dense every-frame volumetric fusion of depth maps to function over an unbounded spatial region. Second, overcoming camera pose estimation limitations in a wide variety of environments by combining both dense geometric and photometric camera pose constraints. Third, efficiently updating the dense map according to place recognition and subsequent loop closure constraints by the use of an 'as-rigid-as-possible' space deformation. We present results on a wide variety of aspects of the system and show through evaluation on de facto standard RGB-D benchmarks that our system performs strongly in terms of trajectory estimation, map quality and computational performance in comparison to other state-of-the-art systems.

366 citations