scispace - formally typeset
Search or ask a question
Author

Erik H. Haroz

Other affiliations: Rice University, Konkuk University
Bio: Erik H. Haroz is an academic researcher from Los Alamos National Laboratory. The author has contributed to research in topics: Carbon nanotube & Optical properties of carbon nanotubes. The author has an hindex of 31, co-authored 77 publications receiving 10487 citations. Previous affiliations of Erik H. Haroz include Rice University & Konkuk University.


Papers
More filters
Journal ArticleDOI
26 Jul 2002-Science
TL;DR: At pH less than 5, the absorption and emission spectra of individual nanotubes show evidence of band gap–selective protonation of the side walls of the tube, which is readily reversed by treatment with base or ultraviolet light.
Abstract: Fluorescence has been observed directly across the band gap of semiconducting carbon nanotubes. We obtained individual nanotubes, each encased in a cylindrical micelle, by ultrasonically agitating an aqueous dispersion of raw single-walled carbon nanotubes in sodium dodecyl sulfate and then centrifuging to remove tube bundles, ropes, and residual catalyst. Aggregation of nanotubes into bundles otherwise quenches the fluorescence through interactions with metallic tubes and substantially broadens the absorption spectra. At pH less than 5, the absorption and emission spectra of individual nanotubes show evidence of band gap-selective protonation of the side walls of the tube. This protonation is readily reversed by treatment with base or ultraviolet light.

3,635 citations

Journal ArticleDOI
TL;DR: In this paper, a general thermodynamic drive for this wrapping is discussed, wherein the polymer disrupts both the hydrophobic interface with water and the smooth tube-tube interactions in aggregates.

1,770 citations

Journal ArticleDOI
TL;DR: In this article, individual single-walled carbon nanotubes (SWNTs) have been suspended in aqueous media using various anionic, cationic, nonionic surfactants and polymers.
Abstract: Individual single-walled carbon nanotubes (SWNTs) have been suspended in aqueous media using various anionic, cationic, nonionic surfactants and polymers. The surfactants are compared with respect to their ability to suspend individual SWNTs and the quality of the absorption and fluorescence spectra. For the ionic surfactants, sodium dodecylbenzene sulfonate (SDBS) gives the most well resolved spectral features. For the nonionic systems, surfactants with higher molecular weight suspend more SWNT material and have more pronounced spectral features.

1,682 citations

Journal ArticleDOI
TL;DR: The ionic surfactant-assisted dispersion of single-walled carbon nanotubes in aqueous solution has been studied by Raman and fluorescent spectroscopy during ultrasonic processing and the former is found to be controlling with the use of a derived kinetic model for the dispersion process and extraction of the characteristic rate of nanotube isolation.
Abstract: The ionic surfactant-assisted dispersion of single-walled carbon nanotubes in aqueous solution has been studied by Raman and fluorescent spectroscopy during ultrasonic processing. During the process, an equilibrium is established between free individuals and aggregates or bundles that limits the concentration of the former that is possible. This equilibrium is a function of free sodium dodecyl sulfate concentration. At surfactant concentrations below this value, fluorescence is shifted to a lower energy due to an increase in micropolarity from water association at the nanotube surface. The mechanism of dispersion is postulated as the formation of gaps or spaces at the bundle ends in the high shear environment of the ultrasonicated solution. Surfactant adsorption and diffusion then propagate this space along the bundle length, thereby separating the individual nanotube. The former is found to be controlling, with the use of a derived kinetic model for the dispersion process and extraction of the characteristic rate of nanotube isolation.

532 citations

Journal ArticleDOI
TL;DR: In this paper, the first evidence of electronic selectivity with metallic nanotubes reacting initially near neutral pH, followed by successive protonation with increasing band gap as the solution is increasingly acidified.
Abstract: In acidic solution between pH 6 and 2.5, protons react reversibly and selectively in the presence of preadsorbed oxygen at the sidewall of aqueous dispersed single-walled carbon nanotubes suspended in sodium dodecyl sulfate. This reactive complex, which protonates the nanotube sidewall, reversibly diminishes absorption intensity, fluorescent emission, and resonant Raman scattering intensity. The results document the first evidence of electronic selectivity with metallic nanotubes reacting initially near neutral pH, followed by successive protonation of nanotubes with increasing band gap as the solution is increasingly acidified. Preadsorption of molecular oxygen is shown to play a critical role in the interaction, and its desorption kinetics is followed using UV irradiation. The role of the charged electric double layer of the surfactant is discussed. This chemistry, which proceeds under relatively mild conditions, holds promise for separating nanotubes by metal and semiconducting types.

341 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on the origin of the D and G peaks and the second order of D peak and show that the G and 2 D Raman peaks change in shape, position and relative intensity with number of graphene layers.

6,496 citations

Journal ArticleDOI
TL;DR: Department of Materials Science, University of Patras, Greece, Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, and Dipartimento di Scienze Farmaceutiche, Universita di Trieste, Piazzale Europa 1, 34127 Triesteadays.
Abstract: Department of Materials Science, University of Patras, 26504 Rio Patras, Greece, Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vass. Constantinou Avenue, 116 35 Athens, Greece, Institut de Biologie Moleculaire et Cellulaire, UPR9021 CNRS, Immunologie et Chimie Therapeutiques, 67084 Strasbourg, France, and Dipartimento di Scienze Farmaceutiche, Universita di Trieste, Piazzale Europa 1, 34127 Trieste, Italy

3,886 citations

Journal ArticleDOI
TL;DR: The use of Raman spectroscopy to reveal the remarkable structure and the unusual electronic and phonon properties of single wall carbon nanotubes (SWNTs) is reviewed comprehensively in this article.

3,835 citations

Journal ArticleDOI
TL;DR: Arc-synthesized single-walled carbon nanotubes have been purified through preparative electrophoresis in agarose gel and glass bead matrixes and promise to be interesting nanomaterials in their own right.
Abstract: Arc-synthesized single-walled carbon nanotubes have been purified through preparative electrophoresis in agarose gel and glass bead matrixes. Two major impurities were isolated: fluorescent carbon and short tubular carbon. Analysis of these two classes of impurities was done. The methods described may be readily extended to the separation of other water-soluble nanoparticles. The separated fluorescent carbon and short tubule carbon species promise to be interesting nanomaterials in their own right.

3,357 citations