scispace - formally typeset
Search or ask a question
Author

Erik O. Hammerstad

Bio: Erik O. Hammerstad is an academic researcher from Chalmers University of Technology. The author has contributed to research in topics: Microstrip & Microstrip antenna. The author has an hindex of 1, co-authored 1 publications receiving 482 citations.

Papers
More filters
Proceedings ArticleDOI
01 Oct 1975
TL;DR: In this article, a method for determining the accuracy of computed impedance and wavelength data for microstrip is proposed and a simple, accurate equation for the microstrip open circuit is presented.
Abstract: A method for determining the accuracy of computed impedance and wavelength data for microstrip is proposed. It is shown that the standard equations of Wheeler and Schneider have rather large errors. Revised equations for microstrip impedance and wavelength are given both for analysis and synthesis with accuracy better than 1%. A simple, accurate equation for the microstrip open circuit is presented. Experimental data on microstrip T-junctions are compared with existing theories. A new accurate equation is given for the reference plane displacement in the stub arm. Corrections are proposed in the existing equations for the other parameters of the equivalent circuit.

514 citations


Cited by
More filters
Book
01 Jan 2001
TL;DR: In this paper, the authors present a general framework for coupling matrix for Coupled Resonator Filters with short-circuited Stubs (UWB) and Cascaded Quadruplet (CQ) filters.
Abstract: Preface to the Second Edition. Preface to the First Edition. 1 Introduction. 2 Network Analysis. 2.1 Network Variables. 2.2 Scattering Parameters. 2.3 Short-Circuit Admittance Parameters. 2.4 Open-Circuit Impedance Parameters. 2.5 ABCD Parameters. 2.6 Transmission-Line Networks. 2.7 Network Connections. 2.8 Network Parameter Conversions. 2.9 Symmetrical Network Analysis. 2.10 Multiport Networks. 2.11 Equivalent and Dual Network. 2.12 Multimode Networks. 3 Basic Concepts and Theories of Filters. 3.1 Transfer Functions. 3.2 Lowpass Prototype Filters and Elements. 3.3 Frequency and Element Transformations. 3.4 Immittance Inverters. 3.5 Richards' Transformation and Kuroda Identities. 3.6 Dissipation and Unloaded Quality Factor. 4 Transmission Lines and Components. 4.1 Microstrip Lines. 4.2 Coupled Lines. 4.3 Discontinuities and Components. 4.4 Other Types of Microstrip Lines. 4.5 Coplanar Waveguide (CPW). 4.6 Slotlines. 5 Lowpass and Bandpass Filters. 5.1 Lowpass Filters. 5.2 Bandpass Filters. 6 Highpass and Bandstop Filters. 6.1 Highpass Filters. 6.2 Bandstop Filters. 7 Coupled-Resonator Circuits. 7.1 General Coupling Matrix for Coupled-Resonator Filters. 7.2 General Theory of Couplings. 7.3 General Formulation for Extracting Coupling Coefficient k. 7.4 Formulation for Extracting External Quality Factor Qe. 7.5 Numerical Examples. 7.6 General Coupling Matrix Including Source and Load. 8 CAD for Low-Cost and High-Volume Production. 8.1 Computer-Aided Design (CAD) Tools. 8.2 Computer-Aided Analysis (CAA). 8.3 Filter Synthesis by Optimization. 8.4 CAD Examples. 9 Advanced RF/Microwave Filters. 9.1 Selective Filters with a Single Pair of Transmission Zeros. 9.2 Cascaded Quadruplet (CQ) Filters. 9.3 Trisection and Cascaded Trisection (CT) Filters. 9.4 Advanced Filters with Transmission-Line Inserted Inverters. 9.5 Linear-Phase Filters. 9.6 Extracted Pole Filters. 9.7 Canonical Filters. 9.8 Multiband Filters. 10 Compact Filters and Filter Miniaturization. 10.1 Miniature Open-Loop and Hairpin Resonator Filters. 10.2 Slow-Wave Resonator Filters. 10.3 Miniature Dual-Mode Resonator Filters. 10.4 Lumped-Element Filters. 10.5 Miniature Filters Using High Dielectric-Constant Substrates. 10.6 Multilayer Filters. 11 Superconducting Filters. 11.1 High-Temperature Superconducting (HTS) Materials. 11.2 HTS Filters for Mobile Communications. 11.3 HTS Filters for Satellite Communications. 11.4 HTS Filters for Radio Astronomy and Radar. 11.5 High-Power HTS Filters. 11.6 Cryogenic Package. 12 Ultra-Wideband (UWB) Filters. 12.1 UWB Filters with Short-Circuited Stubs. 12.2 UWB-Coupled Resonator Filters. 12.3 Quasilumped Element UWB Filters. 12.4 UWB Filters Using Cascaded Miniature High- And Lowpass Filters. 12.5 UWB Filters with Notch Band(s). 13 Tunable and Reconfigurable Filters. 13.1 Tunable Combline Filters. 13.2 Tunable Open-Loop Filters without Via-Hole Grounding. 13.3 Reconfigurable Dual-Mode Bandpass Filters. 13.4 Wideband Filters with Reconfigurable Bandwidth. 13.5 Reconfigurable UWB Filters. 13.6 RF MEMS Reconfigurable Filters. 13.7 Piezoelectric Transducer Tunable Filters. 13.8 Ferroelectric Tunable Filters. Appendix: Useful Constants and Data. A.1 Physical Constants. A.2 Conductivity of Metals at 25 C (298K). A.3 Electical Resistivity rho in 10-8 m of Metals. A.4 Properties of Dielectric Substrates. Index.

4,774 citations

Book
30 Nov 1993
TL;DR: Details of Element Pattern and Mutual Impedance Effects for Phased Arrays and Special Array Feeds for Limited Field of View and Wideband Arrays are presented.
Abstract: Phased Arrays in Radar and Communication Systems. Pattern Characteristics and Synthesis of Linear and Planar Arrays. Patterns of Nonplanar Arrays. Elements, Transmission Lines, and Feed Architectures for Phased Arrays. Summary of Element Pattern and Mutual Impedance Effects. Array Error Effects. Special Array Feeds for Limited Field of View and Wideband Arrays.

2,233 citations

Journal ArticleDOI
TL;DR: A survey of microstrip antenna elements is presented, with emphasis on theoretical and practical design techniques, and critical needs for further research and development for this antenna are identified.
Abstract: A survey of microstrip antenna elements is presented, with emphasis on theoretical and practical design techniques. Available substrate materials are reviewed along with the relation between dielectric constant tolerance and resonant frequency of microstrip patches. Several theoretical analysis techniques are summarized, including transmission-line and modal-expansion (cavity) techniques as well as numerical methods such as the method of moments and finite-element techniques. Practical procedures are given for both standard rectangular and circular patches, as well as variations on those designs including circularly polarized microstrip patches. The quality, bandwidth, and efficiency factors of typical patch designs are discussed. Microstrip dipole and conformal antennas are summarized. Finally, critical needs for further research and development for this antenna are identified.

1,598 citations

Proceedings ArticleDOI
28 May 1980
TL;DR: Very accurate and simple equations are presented for both single and coupled microstrip lines' electrical parameters, i.e. impedances, effective dielectric constants, and attenuation including the effect of anisotropy in the substrate as mentioned in this paper.
Abstract: Very accurate and simple equations are presented for both single and coupled microstrip lines' electrical parameters, i.e. impedances, effective dielectric constants, and attenuation including the effect of anisotropy in the substrate. For the single microstrip the effects of dispersion and non-zero strip thickness are also included.

754 citations

Journal ArticleDOI
18 Jun 1979
TL;DR: In this paper, an improvement to a recently reported theory for the analysis of the pattern and impedance loci of microstrip antennas is developed, which yields a theory which is simple and inexpensive to apply.
Abstract: An improvement to a recently reported theory for the analysis of the pattern and impedance loci of microstrip antennas is developed. It yields a theory which is simple and inexpensive to apply. The fields in the interior of the antennas are characterized in terms of a discrete set of modes. The poles corresponding to these modes are complex and depend on the losses in the antenna. The representation of the fields in terms of these modes is rigorous only for a bona fide cavity with no copper loss. The proper shift in the complex poles due to the addition of copper and radiative losses is approximated by lumping the latter two together with the dielectric loss to form an effective loss tangent. By so doing, it is found that the resulting expressions for impedance of the microstrip antenna are in good agreement with measured results for all modes and feed locations. The theory is applied to the evaluation of impedance variation with feed location, to multiport analysis, and to the design of circularly polarized microstrip antennas.

565 citations