scispace - formally typeset
Search or ask a question
Author

Erik Olai Pettersen

Bio: Erik Olai Pettersen is an academic researcher from University of Florence. The author has contributed to research in topics: Carbonic anhydrase & Methazolamide. The author has an hindex of 1, co-authored 1 publications receiving 1222 citations.

Papers
More filters
PatentDOI
TL;DR: A carbonic anhydrase IX (CA IX) inhibitor is a compound of general formula: R-NH-CX-NH-(CH 2 ) n -Ar-Q-SO 2 -NH 2 or a pharmaceutically acceptable salt, derivative or prodrug thereof.
Abstract: A carbonic anhydrase IX (CA IX) inhibitor which comprises a compound of general formula: R-NH-CX-NH-(CH 2 ) n -Ar-Q-SO 2 -NH 2 or a pharmaceutically-acceptable salt, derivative or prodrug thereof; wherein n = 0, 1 or 2; Q is O or NH; X is O or S; and R comprises an organic substituent group.

1,222 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The biological rationale for the novel uses of inhibitors or activators of CA activity in multiple diseases is discussed, and progress in the development of specific modulators of the relevant CA isoforms is highlighted, some of which are now being evaluated in clinical trials.
Abstract: Carbonic anhydrases (CAs), a group of ubiquitously expressed metalloenzymes, are involved in numerous physiological and pathological processes, including gluconeogenesis, lipogenesis, ureagenesis, tumorigenicity and the growth and virulence of various pathogens. In addition to the established role of CA inhibitors (CAIs) as diuretics and antiglaucoma drugs, it has recently emerged that CAIs could have potential as novel anti-obesity, anticancer and anti-infective drugs. Furthermore, recent studies suggest that CA activation may provide a novel therapy for Alzheimer's disease. This article discusses the biological rationale for the novel uses of inhibitors or activators of CA activity in multiple diseases, and highlights progress in the development of specific modulators of the relevant CA isoforms, some of which are now being evaluated in clinical trials.

2,649 citations

Journal ArticleDOI
TL;DR: Key pH regulators in tumour cells include: isoforms 2, 9 and 12 of carbonic anhydrase, isoforms of anion exchangers, Na+/HCO3− co-transporters, Na+./H+ exchanger, monocarboxylate transporters and the vacuolar ATPase.
Abstract: The high metabolic rate of tumours often leads to acidosis and hypoxia in poorly perfused regions. Tumour cells have thus evolved the ability to function in a more acidic environment than normal cells. Key pH regulators in tumour cells include: isoforms 2, 9 and 12 of carbonic anhydrase, isoforms of anion exchangers, Na+/HCO3- co-transporters, Na+/H+ exchangers, monocarboxylate transporters and the vacuolar ATPase. Both small molecules and antibodies targeting these pH regulators are currently at various stages of clinical development. These antitumour mechanisms are not exploited by the classical cancer drugs and therefore represent a new anticancer drug discovery strategy.

1,331 citations

Journal ArticleDOI
TL;DR: The most commonly methods used in vitro determination of antioxidant capacity of food constituents are reviewed and presented, and the general chemistry underlying the assays in the present paper was clarified.
Abstract: Recently, there has been growing interest in research into the role of plant-derived antioxidants in food and human health. The beneficial influence of many foodstuffs and beverages including fruits, vegetables, tea, coffee, and cacao on human health has been recently recognized to originate from their antioxidant activity. For this purpose, the most commonly methods used in vitro determination of antioxidant capacity of food constituents are reviewed and presented. Also, the general chemistry underlying the assays in the present paper was clarified. Hence, this overview provides a basis and rationale for developing standardized antioxidant capacity methods for the food, nutraceutical, and dietary supplement industries. In addition, the most important advantages and shortcomings of each method were detected and highlighted. The chemical principles of these methods are outlined and critically discussed. The chemical principles of methods of 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical (ABTS·+) scavenging, 1,1-diphenyl-2-picrylhydrazyl (DPPH·) radical scavenging, Fe3+–Fe2+ transformation assay, ferric reducing antioxidant power (FRAP) assay, cupric ions (Cu2+) reducing power assay (Cuprac), Folin-Ciocalteu reducing capacity (FCR assay), peroxyl radical scavenging, superoxide anion radical (O 2 ·− ) scavenging, hydrogen peroxide (H2O2) scavenging, hydroxyl radical (OH·) scavenging, singlet oxygen (1O2) quenching assay and nitric oxide radical (NO·) scavenging assay are outlined and critically discussed. Also, the general antioxidant aspects of main food components were discussed by a number of methods which are currently used for detection of antioxidant properties food components. This review consists of two main sections. The first section is devoted to main components in the foodstuffs and beverages. The second general section is some definitions of the main antioxidant methods commonly used for determination of antioxidant activity of components in the foodstuffs and beverages. In addition, there are given some chemical and kinetic basis and technical details of the used methods.

1,278 citations

Journal ArticleDOI
TL;DR: This Review highlights pathways against which there are already drugs in different stages of development and also discusses additional druggable targets.
Abstract: Cancer therapy has long relied on the rapid proliferation of tumour cells for effective treatment. However, the lack of specificity in this approach often leads to undesirable side effects. Many reports have described various 'metabolic transformation' events that enable cancer cells to survive, suggesting that metabolic pathways might be good targets. There are currently several drugs under development or in clinical trials that are based on specifically targeting the altered metabolic pathways of tumours. This Review highlights pathways against which there are already drugs in different stages of development and also discusses additional druggable targets.

1,021 citations