scispace - formally typeset
E

Erika Lindquist

Researcher at United States Department of Energy

Publications -  127
Citations -  40220

Erika Lindquist is an academic researcher from United States Department of Energy. The author has contributed to research in topics: Genome & Gene. The author has an hindex of 75, co-authored 127 publications receiving 35401 citations. Previous affiliations of Erika Lindquist include University of Potsdam & Lawrence Berkeley National Laboratory.

Papers
More filters
Journal ArticleDOI

The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions

Sabeeha S. Merchant, +118 more
- 12 Oct 2007 - 
TL;DR: Analyses of the Chlamydomonas genome advance the understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.
Journal ArticleDOI

The Physcomitrella Genome Reveals Evolutionary Insights into the Conquest of Land by Plants

Stefan A. Rensing, +77 more
- 04 Jan 2008 - 
TL;DR: This comparison reveals genomic changes concomitant with the evolutionary movement to land, including a general increase in gene family complexity; loss of genes associated with aquatic environments; acquisition of genes for tolerating terrestrial stresses; and the development of the auxin and abscisic acid signaling pathways for coordinating multicellular growth and dehydration response.
Journal ArticleDOI

Genome sequencing and analysis of the model grass Brachypodium distachyon

John P. Vogel, +136 more
- 11 Feb 2010 - 
TL;DR: The high-quality genome sequence will help Brachypodium reach its potential as an important model system for developing new energy and food crops and establishes a template for analysis of the large genomes of economically important pooid grasses such as wheat.
Journal ArticleDOI

The amphioxus genome and the evolution of the chordate karyotype

TL;DR: Whole-genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets and vertebrates), and allow not only reconstruction of the gene complement of the last common chordate ancestor but also partial reconstruction of its genomic organization.