scispace - formally typeset
Search or ask a question
Author

Erika Paolini

Bio: Erika Paolini is an academic researcher from University of Milan. The author has contributed to research in topics: Nonalcoholic fatty liver disease & TM6SF2. The author has an hindex of 3, co-authored 7 publications receiving 16 citations. Previous affiliations of Erika Paolini include Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors evaluated the impact of NAFLD/MAFLD aetiologies on CV health and the potential correction by dietary and drug approaches, and concluded that NAFLDs are correlated with a higher risk of cardiovascular disease.
Abstract: Background A consensus of experts has proposed to replace the term nonalcoholic fatty liver disease (NAFLD), whose global prevalence is 25%, with metabolic dysfunction-associated fatty liver disease (MAFLD), to describe more appropriately the liver disease related to metabolic derangements. MAFLD is closely intertwined with type 2 diabetes, obesity, dyslipidaemia, all linked to a rise in the risk of cardiovascular disease (CVDs). Since controversy still stands on whether or not NAFLD/MAFLD raises the odds of CVD, the present review aims to evaluate the impact of NAFLD/MAFLD aetiologies on CV health and the potential correction by dietary and drug approaches. Results Epidemiological studies indicate that NAFLD raises risk of fatal or non-fatal CVD events. NAFLD patients have a higher prevalence of arterial plaques and stiffness, coronary calcification, and endothelial dysfunction. Although genetic and environmental factors strongly contribute to NAFLD pathogenesis, a Mendelian randomization analysis indicated that the PNPLA3 genetic variant leading to NAFLD may not be causally associated with CVD risk. Among other genetic variants related to NAFLD, TM6SF2 appears to be protective, whereas MBOAT7 may favour venous thromboembolism. Conclusions NAFLD is correlated to a higher CVD risk which may be ameliorated by dietary interventions. This is not surprising, since new criteria defining MAFLD include other metabolic risk abnormalities fuelling development of serious adverse extrahepatic outcomes, for example CVD. The present lack of a targeted pharmacological approach makes the identification of patients with liver disease at higher CVD risk (eg diabetes, hypertension, obesity or high levels of C-reactive protein) of major clinical interest.

27 citations

Journal ArticleDOI
TL;DR: This review will discuss how mitochondrial defects may be translated into causative explanations of NAFLD-driven HCC, emphasizing future directions for research purposes and for development of potential preventive or curative strategies.
Abstract: Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and the third-leading cause of cancer-related mortality Currently, the global burden of nonalcoholic fatty liver disease (NAFLD) has dramatically overcome both viral and alcohol hepatitis, thus becoming the main cause of HCC incidence NAFLD pathogenesis is severely influenced by lifestyle and genetic predisposition Mitochondria are highly dynamic organelles that may adapt in response to environment, genetics and epigenetics in the liver (“mitochondrial plasticity”) Mounting evidence highlights that mitochondrial dysfunction due to loss of mitochondrial flexibility may arise before overt NAFLD, and from the early stages of liver injury Mitochondrial failure promotes not only hepatocellular damage, but also release signals (mito-DAMPs), which trigger inflammation and fibrosis, generating an adverse microenvironment in which several hepatocytes select anti-apoptotic programs and mutations that may allow survival and proliferation Furthermore, one of the key events in malignant hepatocytes is represented by the remodeling of glucidic–lipidic metabolism combined with the reprogramming of mitochondrial functions, optimized to deal with energy demand In sum, this review will discuss how mitochondrial defects may be translated into causative explanations of NAFLD-driven HCC, emphasizing future directions for research and for the development of potential preventive or curative strategies

16 citations

Journal ArticleDOI
08 Apr 2021-Cancers
TL;DR: The rs599839 A>G variant is associated with protection against dyslipidemia and CVD in NAFLD patients, but as one it might promote HCC development by modulating SORT1 and PSRC1 expressions which impact on lipid metabolism and cell proliferation, respectively.
Abstract: Background and Aims: Dyslipidemia and cardiovascular diseases (CVD) are comorbidities of nonalcoholic fatty liver disease (NAFLD), which ranges from steatosis to hepatocellular carcinoma (HCC). The rs599839 A>G variant, in the CELSR2-PSRC1-SORT1 gene cluster, has been associated CVD, but its impact on metabolic traits and on the severity liver damage in NAFLD has not been investigated yet. Methods: We evaluated the effect of the rs599839 variant in 1426 NAFLD patients (Overall cohort) of whom 131 had HCC (NAFLD-HCC), in 500,000 individuals from the UK Biobank Cohort (UKBBC), and in 366 HCC samples from The Cancer Genome Atlas (TCGA). Hepatic PSRC1, SORT1 and CELSR2 expressions were evaluated by RNAseq (n = 125). Results: The rs599839 variant was associated with reduced circulating LDL, carotid intima-media thickness, carotid plaques and hypertension (p G variant is associated with protection against dyslipidemia and CVD in NAFLD patients, but as one it might promote HCC development by modulating SORT1 and PSRC1 expressions which impact on lipid metabolism and cell proliferation, respectively.

12 citations

Journal ArticleDOI
22 Oct 2021
TL;DR: In this article, the receiver operating characteristic curve was used to analyze the accuracy of serum Lp(a) in hepatic fibrosis prediction in patients with nonalcoholic fatty liver disease (NAFLD), which ranges from simple steatosis, fibrosis, and cirrhosis up to hepatocellular carcinoma.
Abstract: Dyslipidemia and cardiovascular complications are comorbidities of nonalcoholic fatty liver disease (NAFLD), which ranges from simple steatosis to nonalcoholic steatohepatitis, fibrosis, and cirrhosis up to hepatocellular carcinoma. Lipoprotein(a) (Lp(a)) has been associated with cardiovascular risk and metabolic abnormalities, but its impact on the severity of liver damage in patients with NAFLD remains to be clarified. Circulating Lp(a) levels were assessed in 600 patients with biopsy-proven NAFLD. The association of Lp(a) with liver damage was explored by categorizing serum Lp(a) into quartiles. The receiver operating characteristic curve was used to analyze the accuracy of serum Lp(a) in hepatic fibrosis prediction. Hepatic expression of lipoprotein A (LPA) and of genes involved in lipid metabolism and fibrogenic processes were evaluated by RNA sequencing in a subset of patients with NAFLD for whom Lp(a) dosage was available (n = 183). In patients with NAFLD, elevated Lp(a) levels were modestly associated with circulating lipids, carotid plaques, and hypertension (P < 0.05). Conversely, patients with low serum Lp(a) displayed insulin resistance (P < 0.05), transaminase elevation (P < 0.05), and increased risk of developing severe fibrosis (P = 0.007) and cirrhosis (P = 0.002). In addition, the diagnostic accuracy of Lp(a) in predicting fibrosis increased by combining it with transaminases (area under the curve fibrosis stage 4, 0.87; P < 0.0001). Hepatic LPA expression reflected serum Lp(a) levels (P = 0.018), and both were reduced with the progression of NAFLD (P < 0.05). Hepatic LPA messenger RNA levels correlated with those of genes involved in lipoprotein release, lipid synthesis, and fibrogenesis (P < 0.05). Finally, transmembrane 6 superfamily member 2 (TM6SF2) rs58542926, apolipoprotein E (ApoE) rs445925, and proprotein convertase subtilisin/kexin type 9 (PCSK9) rs7552841, known variants that modulate circulating lipids, may influence serum Lp(a) levels (P < 0.05). Conclusion: Circulating Lp(a) combined with transaminases may represent a novel noninvasive biomarker to predict advanced fibrosis in patients with NAFLD.

8 citations

Journal ArticleDOI
TL;DR: In this article, the impact of the KLB rs17618244 variant on histological liver damage was surveyed in a retrospective cohort of 1111 adult patients with metabolic associated fatty liver disease (MAFLD).

7 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors focus on how sex and reproductive status, genetics, intestinal microbiota diversity, endocrine and metabolic status, as well as physical activity may interact in determining NAFLD/MAFLD heterogeneity.
Abstract: Precision medicine defines the attempt to identify the most effective approaches for specific subsets of patients based on their genetic background, clinical features, and environmental factors. Nonalcoholic fatty liver disease (NAFLD) encompasses the alcohol-like spectrum of liver disorders (steatosis, steatohepatitis with/without fibrosis, and cirrhosis and hepatocellular carcinoma) in the nonalcoholic patient. Recently, disease renaming to MAFLD [metabolic (dysfunction)-associated fatty liver disease] and positive criteria for diagnosis have been proposed. This review article is specifically devoted to envisaging some clues that may be useful to implementing a precision medicine-oriented approach in research and clinical practice. To this end, we focus on how sex and reproductive status, genetics, intestinal microbiota diversity, endocrine and metabolic status, as well as physical activity may interact in determining NAFLD/MAFLD heterogeneity. All these factors should be considered in the individual patient with the aim of implementing an individualized therapeutic plan. The impact of considering NAFLD heterogeneity on the development of targeted therapies for NAFLD subgroups is also extensively discussed.

37 citations

Journal ArticleDOI
01 Feb 2022-Livers
TL;DR: This review highlights the interaction between oxidative stress (OS) and disturbed lipid metabolism and proposes new therapeutic approaches targeting the gut microbiota dysbiosis, including probiotics, prebiotics, diet, and fecal microbiota transplantation.
Abstract: Non-alcoholic fatty liver disease (NAFLD) is a challenging disease caused by multiple factors, which may partly explain why it still remains an orphan of adequate therapies. This review highlights the interaction between oxidative stress (OS) and disturbed lipid metabolism. Several reactive oxygen species generators, including those produced in the gastrointestinal tract, contribute to the lipotoxic hepatic (and extrahepatic) damage by fatty acids and a great variety of their biologically active metabolites in a “multiple parallel-hit model”. This leads to inflammation and fibrogenesis and contributes to NAFLD progression. The alterations of the oxidant/antioxidant balance affect also metabolism-related organelles, leading to lipid peroxidation, mitochondrial dysfunction, and endoplasmic reticulum stress. This OS-induced damage is at least partially counteracted by the physiological antioxidant response. Therefore, modulation of this defense system emerges as an interesting target to prevent NAFLD development and progression. For instance, probiotics, prebiotics, diet, and fecal microbiota transplantation represent new therapeutic approaches targeting the gut microbiota dysbiosis. The OS and its counter-regulation are under the influence of individual genetic and epigenetic factors as well. In the near future, precision medicine taking into consideration genetic or environmental epigenetic risk factors, coupled with new OS biomarkers, will likely assist in noninvasive diagnosis and monitoring of NAFLD progression and in further personalizing treatments.

36 citations

Journal ArticleDOI
TL;DR: In this paper, the authors developed non-invasive serum diagnostic markers for fulfilling the need of diagnostic testing in a large amount of NAFLD cases, which is helpful to choose an optimized treatment.
Abstract: Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, with a broad spectrum ranging from simple steatosis to advanced stage of nonalcoholic steatohepatitis (NASH). Although there are many undergoing clinical trials for NAFLD treatment, there is no currently approved treatment. NAFLD accounts as a major causing factor for the development of hepatocellular carcinoma (HCC), and its incidence rises accompanying the prevalence of obesity and diabetes. Reprogramming of antidiabetic and anti-obesity medicine is a major treatment option for NAFLD and NASH. Liver inflammation and cellular death, with or without fibrosis account for the progression of NAFLD to NASH. Therefore, molecules and signaling pathways involved in hepatic inflammation, fibrosis, and cell death are critically important targets for the therapy of NAFLD and NASH. In addition, the avoidance of aberrant infiltration of inflammatory cytokines by treating with CCR antagonists also provides a therapeutic option. Currently, there is an increasing number of pre-clinical and clinical trials undergoing to evaluate the effects of antidiabetic and anti-obesity drugs, antibiotics, pan-caspase inhibitors, CCR2/5 antagonists, and others on NAFLD, NASH, and liver fibrosis. Non-invasive serum diagnostic markers are developed for fulfilling the need of diagnostic testing in a large amount of NAFLD cases. Overall, a better understanding of the underlying mechanism of the pathogenesis of NAFLD is helpful to choose an optimized treatment.

31 citations

Journal ArticleDOI
TL;DR: In this paper, a review of previous literature investigating neutrophil function in both type 1 and type 2 diabetes (T1D and T2D) is presented, in order to understand the complex neutrophIL phenotype present in this disease and also to focus on the development of new therapies to improve aberrant neutrophils function in diabetes.
Abstract: Chronic and recurrent infections occur commonly in both type 1 and type 2 diabetes (T1D, T2D) and increase patient morbidity and mortality. Neutrophils are professional phagocytes of the innate immune system that are critical in pathogen handling. Neutrophil responses to infection are dysregulated in diabetes, predominantly mediated by persistent hyperglycaemia; the chief biochemical abnormality in T1D and T2D. Therapeutically enhancing host immunity in diabetes to improve infection resolution is an expanding area of research. Individuals with diabetes are also at an increased risk of severe coronavirus disease 2019 (COVID-19), highlighting the need for re-invigorated and urgent focus on this field. The aim of this review is to explore the breadth of previous literature investigating neutrophil function in both T1D and T2D, in order to understand the complex neutrophil phenotype present in this disease and also to focus on the development of new therapies to improve aberrant neutrophil function in diabetes. Existing literature illustrates a dual neutrophil dysfunction in diabetes. Key pathogen handling mechanisms of neutrophil recruitment, chemotaxis, phagocytosis and intracellular reactive oxygen species (ROS) production are decreased in diabetes, weakening the immune response to infection. However, pro-inflammatory neutrophil pathways, mainly neutrophil extracellular trap (NET) formation, extracellular ROS generation and pro-inflammatory cytokine generation, are significantly upregulated, causing damage to the host and perpetuating inflammation. Reducing these proinflammatory outputs therapeutically is emerging as a credible strategy to improve infection resolution in diabetes, and also more recently COVID-19. Future research needs to drive forward the exploration of novel treatments to improve infection resolution in T1D and T2D to improve patient morbidity and mortality.

25 citations

Journal ArticleDOI
TL;DR: In this paper , the antioxidant effects of statins achieved by modulating the nuclear factor erythroid 2 related factor 2/ heme oxygenase-1 (Nrf2/HO-1) pathway in different organs and diseases are discussed.
Abstract: Statins are competitive inhibitors of hydroxymethylglutaryl-CoA (HMG-CoA) reductase and have been used to treat elevated low-density lipoprotein cholesterol (LDL-C) for almost four decades. Antioxidant and anti-inflammatory properties which are independent of the lipid-lowering effects of statins, i.e., their pleiotropic effects, might be beneficial in the prevention or treatment of many diseases. This review discusses the antioxidant effects of statins achieved by modulating the nuclear factor erythroid 2 related factor 2/ heme oxygenase-1 (Nrf2/HO-1) pathway in different organs and diseases. Nrf2 and other proteins involved in the Nrf2/HO-1 signaling pathway have a crucial role in cellular responses to oxidative stress, which is a risk factor for ASCVD. Statins can significantly increase the DNA-binding activity of Nrf2 and induce the expression of its target genes, such as HO-1 and glutathione peroxidase) GPx, (thus protecting the cells against oxidative stress. Antioxidant and anti-inflammatory properties of statins, which are independent of their lipid-lowering effects, could be partly explained by the modulation of the Nrf2/HO-1 pathway.

23 citations