scispace - formally typeset
Search or ask a question
Author

Erika R. Manuli

Bio: Erika R. Manuli is an academic researcher from University of São Paulo. The author has contributed to research in topics: Medicine & Virology. The author has an hindex of 11, co-authored 24 publications receiving 1132 citations.
Topics: Medicine, Virology, Virus, Saliva, Lineage (genetic)

Papers
More filters
Journal ArticleDOI
Nuno R. Faria, Thomas A. Mellan1, Charles Whittaker1, Ingra Morales Claro2, Darlan da Silva Candido3, Darlan da Silva Candido2, Swapnil Mishra1, Myuki A E Crispim, Flavia C. S. Sales2, Iwona Hawryluk1, John T. McCrone4, Ruben J.G. Hulswit3, Lucas A M Franco2, Mariana S. Ramundo2, Jaqueline Goes de Jesus2, Pamela S Andrade2, Thais M. Coletti2, Giulia M. Ferreira5, Camila A. M. Silva2, Erika R. Manuli2, Rafael Henrique Moraes Pereira, Pedro S. Peixoto2, Moritz U. G. Kraemer3, Nelson Gaburo, Cecilia da C. Camilo, Henrique Hoeltgebaum1, William Marciel de Souza2, Esmenia C. Rocha2, Leandro Marques de Souza2, Mariana C. Pinho2, Leonardo José Tadeu de Araújo6, Frederico S V Malta, Aline B. de Lima, Joice do P. Silva, Danielle A G Zauli, Alessandro C. S. Ferreira, Ricardo P Schnekenberg3, Daniel J Laydon1, Patrick G T Walker1, Hannah M. Schlüter1, Ana L. P. dos Santos, Maria S. Vidal, Valentina S. Del Caro, Rosinaldo M. F. Filho, Helem M. dos Santos, Renato Santana Aguiar7, José Luiz Proença-Módena8, Bruce Walker Nelson9, James A. Hay10, Melodie Monod1, Xenia Miscouridou1, Helen Coupland1, Raphael Sonabend1, Michaela A. C. Vollmer1, Axel Gandy1, Carlos A. Prete2, Vitor H. Nascimento2, Marc A. Suchard11, Thomas A. Bowden3, Sergei L Kosakovsky Pond12, Chieh-Hsi Wu13, Oliver Ratmann1, Neil M. Ferguson1, Christopher Dye3, Nicholas J. Loman14, Philippe Lemey15, Andrew Rambaut4, Nelson Abrahim Fraiji, Maria Perpétuo Socorro Sampaio Carvalho, Oliver G. Pybus3, Oliver G. Pybus16, Seth Flaxman1, Samir Bhatt17, Samir Bhatt1, Ester Cerdeira Sabino2 
21 May 2021-Science
TL;DR: In this article, the authors used a two-category dynamical model that integrates genomic and mortality data to estimate that P.1 may be 1.7-to 2.4-fold more transmissible and that previous (non-P.1) infection provides 54 to 79% of the protection against infection with P.
Abstract: Cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Manaus, Brazil, resurged in late 2020 despite previously high levels of infection. Genome sequencing of viruses sampled in Manaus between November 2020 and January 2021 revealed the emergence and circulation of a novel SARS-CoV-2 variant of concern. Lineage P.1 acquired 17 mutations, including a trio in the spike protein (K417T, E484K, and N501Y) associated with increased binding to the human ACE2 (angiotensin-converting enzyme 2) receptor. Molecular clock analysis shows that P.1 emergence occurred around mid-November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.7- to 2.4-fold more transmissible and that previous (non-P.1) infection provides 54 to 79% of the protection against infection with P.1 that it provides against non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness.

985 citations

Journal ArticleDOI
Darlan da Silva Candido1, Darlan da Silva Candido2, Ingra Morales Claro1, Jaqueline Goes de Jesus1, William Marciel de Souza, Filipe R. R. Moreira3, Simon Dellicour4, Simon Dellicour5, Thomas A. Mellan6, Louis du Plessis2, Rafael Henrique Moraes Pereira, Flavia C. S. Sales1, Erika R. Manuli1, Julien Thézé7, Luiz Carlos de Almeida, Mariane Talon de Menezes3, Carolina M. Voloch3, Marcílio Jorge Fumagalli, Thais M. Coletti1, Camila A. M. Silva1, Mariana S. Ramundo1, Mariene R. Amorim8, Henrique Hoeltgebaum6, Swapnil Mishra6, Mandev S. Gill5, Luiz Max Carvalho9, Lewis F Buss1, Carlos A. Prete1, Jordan Ashworth10, Helder I. Nakaya1, Pedro S. Peixoto1, Oliver J. Brady11, Samuel M. Nicholls12, Amilcar Tanuri3, Átila Duque Rossi3, Carlos Kaue Vieira Braga, Alexandra L. Gerber, Ana Paula de C Guimarães, Nelson Gaburo, Cecila Salete Alencar1, Alessandro C. S. Ferreira, Cristiano Xavier Lima13, José Eduardo Levi14, Celso Francisco Hernandes Granato, Giulia M. Ferreira15, Ronaldo da Silva Francisco, Fabiana Granja16, Fabiana Granja8, Márcia Teixeira Garcia8, Maria Luiza Moretti8, Mauricio W. Perroud8, Terezinha M. P. P. Castineiras3, Carolina S. Lazari1, Sarah C. Hill17, Sarah C. Hill2, Andreza Aruska de Souza Santos2, Camila L. Simeoni8, Julia Forato8, Andrei C. Sposito8, Angelica Zaninelli Schreiber8, Magnun N. N. Santos8, Camila Zolini de Sá13, Renan P. Souza13, Luciana C. Resende-Moreira13, Mauro M. Teixeira13, Josy Hubner13, Patricia Asfora Falabella Leme8, Rennan G. Moreira13, Maurício Lacerda Nogueira18, Neil M. Ferguson1, Silvia Figueiredo Costa8, José Luiz Proença-Módena, Ana Tereza Ribeiro de Vasconcelos6, Samir Bhatt5, Philippe Lemey19, Chieh-Hsi Wu10, Andrew Rambaut12, Nicholas J. Loman13, Renato Santana Aguiar2, Oliver G. Pybus1, Ester Cerdeira Sabino1, Ester Cerdeira Sabino6, Ester Cerdeira Sabino2, Nuno R. Faria2, Nuno R. Faria6, Nuno R. Faria1 
23 Jul 2020-Science
TL;DR: New light is shed on the epidemic transmission and evolutionary trajectories of SARS-CoV-2 lineages in Brazil and evidence that current interventions remain insufficient to keep virus transmission under control in this country is provided.
Abstract: Brazil currently has one of the fastest-growing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemics in the world. Because of limited available data, assessments of the impact of nonpharmaceutical interventions (NPIs) on this virus spread remain challenging. Using a mobility-driven transmission model, we show that NPIs reduced the reproduction number from >3 to 1 to 1.6 in Sao Paulo and Rio de Janeiro. Sequencing of 427 new genomes and analysis of a geographically representative genomic dataset identified >100 international virus introductions in Brazil. We estimate that most (76%) of the Brazilian strains fell in three clades that were introduced from Europe between 22 February and 11 March 2020. During the early epidemic phase, we found that SARS-CoV-2 spread mostly locally and within state borders. After this period, despite sharp decreases in air travel, we estimated multiple exportations from large urban centers that coincided with a 25% increase in average traveled distances in national flights. This study sheds new light on the epidemic transmission and evolutionary trajectories of SARS-CoV-2 lineages in Brazil and provides evidence that current interventions remain insufficient to keep virus transmission under control in this country.

286 citations

Posted ContentDOI
Nuno R. Faria1, Nuno R. Faria2, Nuno R. Faria3, Thomas A. Mellan2, Charles Whittaker2, Ingra Morales Claro3, Darlan da Silva Candido1, Darlan da Silva Candido3, Swapnil Mishra2, Myuki A E Crispim, Flavia C. S. Sales3, Iwona Hawryluk2, John T. McCrone4, Ruben J.G. Hulswit1, Lucas A M Franco3, Mariana S. Ramundo3, Jaqueline Goes de Jesus3, Pamela S Andrade3, Thais M. Coletti3, Giulia M. Ferreira5, Camila A. M. Silva3, Erika R. Manuli3, Rafael Henrique Moraes Pereira, Pedro S. Peixoto3, Moritz U. G. Kraemer1, Nelson Gaburo, Cecilia da C. Camilo, Henrique Hoeltgebaum2, William Marciel de Souza3, Esmenia C. Rocha3, Leandro Marques de Souza3, Mariana C. Pinho3, Leonardo José Tadeu de Araújo6, Frederico S V Malta, Aline B. de Lima, Joice do P. Silva, Danielle A G Zauli, Alessandro C. S. Ferreira, Ricardo P Schnekenberg1, Daniel J Laydon2, Patrick G T Walker2, Hannah M. Schlüter2, Ana L. P. dos Santos, Maria S. Vidal, Valentina S. Del Caro, Rosinaldo M. F. Filho, Helem M. dos Santos, Renato Santana Aguiar7, José Luiz Proença Modena8, Bruce Walker Nelson9, James A. Hay10, Melodie Monod2, Xenia Miscouridou2, Helen Coupland2, Raphael Sonabend2, Michaela A. C. Vollmer2, Axel Gandy2, Marc A. Suchard11, Thomas A. Bowden1, Sergei L Kosakovsky Pond12, Chieh-Hsi Wu13, Oliver Ratmann2, Neil M. Ferguson2, Christopher Dye1, Nicholas J. Loman14, Philippe Lemey15, Andrew Rambaut4, Nelson Abrahim Fraiji, Maria Perpétuo Socorro Sampaio Carvalho, Oliver G. Pybus1, Oliver G. Pybus16, Seth Flaxman2, Samir Bhatt17, Samir Bhatt2, Ester Cerdeira Sabino3 
03 Mar 2021-medRxiv
TL;DR: In this paper, the emergence and circulation of a new SARS-CoV-2 variant of concern, lineage P.1, that acquired 17 mutations, including a trio in the spike protein (K417T, E484K and N501Y) associated with increased binding to the human ACE2 receptor.
Abstract: Cases of SARS-CoV-2 infection in Manaus, Brazil, resurged in late 2020, despite high levels of previous infection there. Through genome sequencing of viruses sampled in Manaus between November 2020 and January 2021, we identified the emergence and circulation of a novel SARS-CoV-2 variant of concern, lineage P.1, that acquired 17 mutations, including a trio in the spike protein (K417T, E484K and N501Y) associated with increased binding to the human ACE2 receptor. Molecular clock analysis shows that P.1 emergence occurred around early November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.4–2.2 times more transmissible and 25-61% more likely to evade protective immunity elicited by previous infection with non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness. One-Sentence Summary We report the evolution and emergence of a SARS-CoV-2 lineage of concern associated with rapid transmission in Manaus.

155 citations

DOI
Darlan da Silva Candido, Ingra Morales Claro, Jaqueline Goes de Jesus, William Marciel de Souza, Filipe R. R. Moreira, Simon Dellicour, Thomas A. Mellan, Louis du Plessis, Rafael Henrique Moraes Pereira, Flavia C. S. Sales, Erika R. Manuli, Julien Thézé, Luiz Carlos de Almeida, Mariane Talon de Menezes, Carolina M. Voloch, Marcílio Jorge Fumagalli, Thais M. Coletti, Camila A. M. Silva, Mariana S. Ramundo, Mariene R. Amorim, Henrique Hoeltgebaum, Swapnil Mishra, Mandev S. Gill, Luiz Max Carvalho, Lewis F Buss, Carlos A. Prete, Jordan Ashworth, Helder I. Nakaya, Pedro S. Peixoto, Oliver J. Brady, Samuel M. Nicholls, Amilcar Tanuri, Átila Duque Rossi, Carlos Kaue Vieira Braga, Alexandra L. Gerber, Ana Paula de C Guimarães, Nelson Gaburo, Cecila Salete Alencar, Alessandro C. S. Ferreira, Cristiano Xavier Lima, José Eduardo Levi, Celso Francisco Hernandes Granato, Giulia M. Ferreira, Ronaldo da Silva Francisco, Fabiana Granja, Márcia Teixeira Garcia, Maria Luiza Moretti, Mauricio W. Perroud, Terezinha M. P. P. Castineiras, Carolina S. Lazari, Sarah C. Hill, Andreza Aruska de Souza Santos, Camila L. Simeoni, Julia Forato, Andrei C. Sposito, Angelica Zaninelli Schreiber, Magnun N. N. Santos, Camila Zolini de Sá, Renan P. Souza, Luciana C. Resende-Moreira, Mauro M. Teixeira, Josy Hubner, Patricia Asfora Falabella Leme, Rennan G. Moreira, Maurício Lacerda Nogueira, Neil M. Ferguson, Silvia Figueiredo Costa, José Luiz Proença-Módena, Ana Tereza Ribeiro de Vasconcelos, Samir Bhatt, Philippe Lemey, Chieh-Hsi Wu, Andrew Rambaut, Nicholas J. Loman, Renato Santana Aguiar, Oliver G. Pybus, Ester Cerdeira Sabino, Nuno R. Faria 
05 Aug 2020
TL;DR: New light is shed on the epidemic transmission and evolutionary trajectories of SARS-CoV-2 lineages in Brazil, and evidence that current interventions remain insufficient to keep virus transmission under control in the country is provided.
Abstract: Brazil currently has one of the fastest growing SARS-CoV-2 epidemics in the world. Owing to limited available data, assessments of the impact of non-pharmaceutical interventions (NPIs) on virus spread remain challenging. Using a mobility-driven transmission model, we show that NPIs reduced the reproduction number from >3 to 1–1.6 in Sao Paulo and Rio de Janeiro. Sequencing of 427 new genomes and analysis of a geographically representative genomic dataset identified >100 international virus introductions in Brazil. We estimate that most (76%) of the Brazilian strains fell in three clades that were introduced from Europe between 22 February11 March 2020. During the early epidemic phase, we found that SARS-CoV-2 spread mostly locally and within-state borders. After this period, despite sharp decreases in air travel, we estimated multiple exportations from large urban centers that coincided with a 25% increase in average travelled distances in national flights. This study sheds new light on the epidemic transmission and evolutionary trajectories of SARS-CoV-2 lineages in Brazil, and provide evidence that current interventions remain insufficient to keep virus transmission under control in the country.

138 citations

Journal ArticleDOI
08 Jul 2021
TL;DR: In this article, the neutralizing effects of antibodies on lineage P.1 and lineage B isolates of SARS-CoV-2, using plasma samples from patients previously infected with or vaccinated against SARS CoV2, were investigated.
Abstract: Summary Background Mutations accrued by SARS-CoV-2 lineage P.1—first detected in Brazil in early January, 2021—include amino acid changes in the receptor-binding domain of the viral spike protein that also are reported in other variants of concern, including B.1.1.7 and B.1.351. We aimed to investigate whether isolates of wild-type P.1 lineage SARS-CoV-2 can escape from neutralising antibodies generated by a polyclonal immune response. Methods We did an immunological study to assess the neutralising effects of antibodies on lineage P.1 and lineage B isolates of SARS-CoV-2, using plasma samples from patients previously infected with or vaccinated against SARS-CoV-2. Two specimens (P.1/28 and P.1/30) containing SARS-CoV-2 lineage P.1 (as confirmed by viral genome sequencing) were obtained from nasopharyngeal and bronchoalveolar lavage samples collected from patients in Manaus, Brazil, and compared against an isolate of SARS-CoV-2 lineage B (SARS.CoV2/SP02.2020) recovered from a patient in Brazil in February, 2020. Isolates were incubated with plasma samples from 21 blood donors who had previously had COVID-19 and from a total of 53 recipients of the chemically inactivated SARS-CoV-2 vaccine CoronaVac: 18 individuals after receipt of a single dose and an additional 20 individuals (38 in total) after receipt of two doses (collected 17–38 days after the most recent dose); and 15 individuals who received two doses during the phase 3 trial of the vaccine (collected 134–230 days after the second dose). Antibody neutralisation of P.1/28, P.1/30, and B isolates by plasma samples were compared in terms of median virus neutralisation titre (VNT50, defined as the reciprocal value of the sample dilution that showed 50% protection against cytopathic effects). Findings In terms of VNT50, plasma from individuals previously infected with SARS-CoV-2 had an 8·6 times lower neutralising capacity against the P.1 isolates (median VNT50 30 [IQR Interpretation SARS-CoV-2 lineage P.1 might escape neutralisation by antibodies generated in response to polyclonal stimulation against previously circulating variants of SARS-CoV-2. Continuous genomic surveillance of SARS-CoV-2 combined with antibody neutralisation assays could help to guide national immunisation programmes. Funding Sao Paulo Research Foundation, Brazilian Ministry of Science, Technology and Innovation and Funding Authority for Studies, Medical Research Council, National Council for Scientific and Technological Development, National Institutes of Health. Translation For the Portuguese translation of the abstract see Supplementary Materials section.

80 citations


Cited by
More filters
Journal ArticleDOI
01 Dec 1941-Nature
TL;DR: The Pharmacological Basis of Therapeutics, by Prof. Louis Goodman and Prof. Alfred Gilman, New York: The Macmillan Company, 1941, p.
Abstract: The Pharmacological Basis of Therapeutics A Textbook of Pharmacology, Toxicology and Therapeutics for Physicians and Medical Students. By Prof. Louis Goodman and Prof. Alfred Gilman. Pp. xiii + 1383. (New York: The Macmillan Company, 1941.) 50s. net.

2,686 citations

20 Mar 2020
TL;DR: The effects of the epidemic caused by the new CoV has yet to emerge as the situation is quickly evolving, and world governments are at work to establish countermeasures to stem possible devastating effects.
Abstract: According to the World Health Organization (WHO), viral diseases continue to emerge and represent a serious issue to public health In the last twenty years, several viral epidemics such as the severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002 to 2003, and H1N1 influenza in 2009, have been recorded Most recently, the Middle East respiratory syndrome coronavirus (MERS-CoV) was first identified in Saudi Arabia in 2012 In a timeline that reaches the present day, an epidemic of cases with unexplained low respiratory infections detected in Wuhan, the largest metropolitan area in China's Hubei province, was first reported to the WHO Country Office in China, on December 31, 2019 Published literature can trace the beginning of symptomatic individuals back to the beginning of December 2019 As they were unable to identify the causative agent, these first cases were classified as "pneumonia of unknown etiology " The Chinese Center for Disease Control and Prevention (CDC) and local CDCs organized an intensive outbreak investigation program The etiology of this illness is now attributed to a novel virus belonging to the coronavirus (CoV) family, COVID-19 On February 11, 2020, the WHO Director-General, Dr Tedros Adhanom Ghebreyesus, announced that the disease caused by this new CoV was a "COVID-19," which is the acronym of "coronavirus disease 2019" In the past twenty years, two additional coronavirus epidemics have occurred SARS-CoV provoked a large-scale epidemic beginning in China and involving two dozen countries with approximately 8000 cases and 800 deaths, and the MERS-CoV that began in Saudi Arabia and has approximately 2,500 cases and 800 deaths and still causes as sporadic cases This new virus seems to be very contagious and has quickly spread globally In a meeting on January 30, 2020, per the International Health Regulations (IHR, 2005), the outbreak was declared by the WHO a Public Health Emergency of International Concern (PHEIC) as it had spread to 18 countries with four countries reporting human-to-human transmission An additional landmark occurred on February 26, 2020, as the first case of the disease, not imported from China, was recorded in the United States Initially, the new virus was called 2019-nCoV Subsequently, the task of experts of the International Committee on Taxonomy of Viruses (ICTV) termed it the SARS-CoV-2 virus as it is very similar to the one that caused the SARS outbreak (SARS-CoVs) The CoVs have become the major pathogens of emerging respiratory disease outbreaks They are a large family of single-stranded RNA viruses (+ssRNA) that can be isolated in different animal species For reasons yet to be explained, these viruses can cross species barriers and can cause, in humans, illness ranging from the common cold to more severe diseases such as MERS and SARS Interestingly, these latter viruses have probably originated from bats and then moving into other mammalian hosts — the Himalayan palm civet for SARS-CoV, and the dromedary camel for MERS-CoV — before jumping to humans The dynamics of SARS-Cov-2 are currently unknown, but there is speculation that it also has an animal origin The potential for these viruses to grow to become a pandemic worldwide seems to be a serious public health risk Concerning COVID-19, the WHO raised the threat to the CoV epidemic to the "very high" level, on February 28, 2020 Probably, the effects of the epidemic caused by the new CoV has yet to emerge as the situation is quickly evolving World governments are at work to establish countermeasures to stem possible devastating effects Health organizations coordinate information flows and issues directives and guidelines to best mitigate the impact of the threat At the same time, scientists around the world work tirelessly, and information about the transmission mechanisms, the clinical spectrum of disease, new diagnostics, and prevention and therapeutic strategies are rapidly developing Many uncertainties remain with regard to both the virus-host interac ion and the evolution of the epidemic, with specific reference to the times when the epidemic will reach its peak At the moment, the therapeutic strategies to deal with the infection are only supportive, and prevention aimed at reducing transmission in the community is our best weapon Aggressive isolation measures in China have led to a progressive reduction of cases in the last few days In Italy, in geographic regions of the north of the peninsula, political and health authorities are making incredible efforts to contain a shock wave that is severely testing the health system In the midst of the crisis, the authors have chosen to use the "Statpearls" platform because, within the PubMed scenario, it represents a unique tool that may allow them to make updates in real-time The aim, therefore, is to collect information and scientific evidence and to provide an overview of the topic that will be continuously updated

2,161 citations

Journal ArticleDOI
TL;DR: A review of the literature on mutations of the SARS-CoV-2 spike protein, the primary antigen, focusing on their impacts on antigenicity and contextualizing them in the protein structure is presented in this article.
Abstract: Although most mutations in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome are expected to be either deleterious and swiftly purged or relatively neutral, a small proportion will affect functional properties and may alter infectivity, disease severity or interactions with host immunity. The emergence of SARS-CoV-2 in late 2019 was followed by a period of relative evolutionary stasis lasting about 11 months. Since late 2020, however, SARS-CoV-2 evolution has been characterized by the emergence of sets of mutations, in the context of ‘variants of concern’, that impact virus characteristics, including transmissibility and antigenicity, probably in response to the changing immune profile of the human population. There is emerging evidence of reduced neutralization of some SARS-CoV-2 variants by postvaccination serum; however, a greater understanding of correlates of protection is required to evaluate how this may impact vaccine effectiveness. Nonetheless, manufacturers are preparing platforms for a possible update of vaccine sequences, and it is crucial that surveillance of genetic and antigenic changes in the global virus population is done alongside experiments to elucidate the phenotypic impacts of mutations. In this Review, we summarize the literature on mutations of the SARS-CoV-2 spike protein, the primary antigen, focusing on their impacts on antigenicity and contextualizing them in the protein structure, and discuss them in the context of observed mutation frequencies in global sequence datasets. The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been characterized by the emergence of mutations and so-called variants of concern that impact virus characteristics, including transmissibility and antigenicity. In this Review, members of the COVID-19 Genomics UK (COG-UK) Consortium and colleagues summarize mutations of the SARS-CoV-2 spike protein, focusing on their impacts on antigenicity and contextualizing them in the protein structure, and discuss them in the context of observed mutation frequencies in global sequence datasets.

2,047 citations

Journal ArticleDOI
TL;DR: In this article, structural and cellular foundations for understanding the multistep SARS-CoV-2 entry process, including S protein synthesis, S protein structure, conformational transitions necessary for association of the spike (S) protein with ACE2, engagement of the receptor-binding domain of the S protein with ACS, proteolytic activation of S protein, endocytosis and membrane fusion are provided.
Abstract: The unprecedented public health and economic impact of the COVID-19 pandemic caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been met with an equally unprecedented scientific response. Much of this response has focused, appropriately, on the mechanisms of SARS-CoV-2 entry into host cells, and in particular the binding of the spike (S) protein to its receptor, angiotensin-converting enzyme 2 (ACE2), and subsequent membrane fusion. This Review provides the structural and cellular foundations for understanding the multistep SARS-CoV-2 entry process, including S protein synthesis, S protein structure, conformational transitions necessary for association of the S protein with ACE2, engagement of the receptor-binding domain of the S protein with ACE2, proteolytic activation of the S protein, endocytosis and membrane fusion. We define the roles of furin-like proteases, transmembrane protease, serine 2 (TMPRSS2) and cathepsin L in these processes, and delineate the features of ACE2 orthologues in reservoir animal species and S protein adaptations that facilitate efficient human transmission. We also examine the utility of vaccines, antibodies and other potential therapeutics targeting SARS-CoV-2 entry mechanisms. Finally, we present key outstanding questions associated with this critical process.

988 citations

Journal ArticleDOI
Nuno R. Faria, Thomas A. Mellan1, Charles Whittaker1, Ingra Morales Claro2, Darlan da Silva Candido3, Darlan da Silva Candido2, Swapnil Mishra1, Myuki A E Crispim, Flavia C. S. Sales2, Iwona Hawryluk1, John T. McCrone4, Ruben J.G. Hulswit3, Lucas A M Franco2, Mariana S. Ramundo2, Jaqueline Goes de Jesus2, Pamela S Andrade2, Thais M. Coletti2, Giulia M. Ferreira5, Camila A. M. Silva2, Erika R. Manuli2, Rafael Henrique Moraes Pereira, Pedro S. Peixoto2, Moritz U. G. Kraemer3, Nelson Gaburo, Cecilia da C. Camilo, Henrique Hoeltgebaum1, William Marciel de Souza2, Esmenia C. Rocha2, Leandro Marques de Souza2, Mariana C. Pinho2, Leonardo José Tadeu de Araújo6, Frederico S V Malta, Aline B. de Lima, Joice do P. Silva, Danielle A G Zauli, Alessandro C. S. Ferreira, Ricardo P Schnekenberg3, Daniel J Laydon1, Patrick G T Walker1, Hannah M. Schlüter1, Ana L. P. dos Santos, Maria S. Vidal, Valentina S. Del Caro, Rosinaldo M. F. Filho, Helem M. dos Santos, Renato Santana Aguiar7, José Luiz Proença-Módena8, Bruce Walker Nelson9, James A. Hay10, Melodie Monod1, Xenia Miscouridou1, Helen Coupland1, Raphael Sonabend1, Michaela A. C. Vollmer1, Axel Gandy1, Carlos A. Prete2, Vitor H. Nascimento2, Marc A. Suchard11, Thomas A. Bowden3, Sergei L Kosakovsky Pond12, Chieh-Hsi Wu13, Oliver Ratmann1, Neil M. Ferguson1, Christopher Dye3, Nicholas J. Loman14, Philippe Lemey15, Andrew Rambaut4, Nelson Abrahim Fraiji, Maria Perpétuo Socorro Sampaio Carvalho, Oliver G. Pybus3, Oliver G. Pybus16, Seth Flaxman1, Samir Bhatt1, Samir Bhatt17, Ester Cerdeira Sabino2 
21 May 2021-Science
TL;DR: In this article, the authors used a two-category dynamical model that integrates genomic and mortality data to estimate that P.1 may be 1.7-to 2.4-fold more transmissible and that previous (non-P.1) infection provides 54 to 79% of the protection against infection with P.
Abstract: Cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Manaus, Brazil, resurged in late 2020 despite previously high levels of infection. Genome sequencing of viruses sampled in Manaus between November 2020 and January 2021 revealed the emergence and circulation of a novel SARS-CoV-2 variant of concern. Lineage P.1 acquired 17 mutations, including a trio in the spike protein (K417T, E484K, and N501Y) associated with increased binding to the human ACE2 (angiotensin-converting enzyme 2) receptor. Molecular clock analysis shows that P.1 emergence occurred around mid-November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.7- to 2.4-fold more transmissible and that previous (non-P.1) infection provides 54 to 79% of the protection against infection with P.1 that it provides against non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness.

985 citations