scispace - formally typeset
Search or ask a question
Author

Erin L. Renshaw

Bio: Erin L. Renshaw is an academic researcher from Microsoft. The author has contributed to research in topics: Pixel & Audio mining. The author has an hindex of 19, co-authored 32 publications receiving 4596 citations.

Papers
More filters
Proceedings ArticleDOI
07 Aug 2005
TL;DR: RankNet is introduced, an implementation of these ideas using a neural network to model the underlying ranking function, and test results on toy data and on data from a commercial internet search engine are presented.
Abstract: We investigate using gradient descent methods for learning ranking functions; we propose a simple probabilistic cost function, and we introduce RankNet, an implementation of these ideas using a neural network to model the underlying ranking function. We present test results on toy data and on data from a commercial internet search engine.

2,813 citations

Proceedings Article
01 Oct 2013
TL;DR: MCTest is presented, a freely available set of stories and associated questions intended for research on the machine comprehension of text that requires machines to answer multiple-choice reading comprehension questions about fictional stories, directly tackling the high-level goal of open-domain machine comprehension.
Abstract: We present MCTest, a freely available set of stories and associated questions intended for research on the machine comprehension of text. Previous work on machine comprehension (e.g., semantic modeling) has made great strides, but primarily focuses either on limited-domain datasets, or on solving a more restricted goal (e.g., open-domain relation extraction). In contrast, MCTest requires machines to answer multiple-choice reading comprehension questions about fictional stories, directly tackling the high-level goal of open-domain machine comprehension. Reading comprehension can test advanced abilities such as causal reasoning and understanding the world, yet, by being multiple-choice, still provide a clear metric. By being fictional, the answer typically can be found only in the story itself. The stories and questions are also carefully limited to those a young child would understand, reducing the world knowledge that is required for the task. We present the scalable crowd-sourcing methods that allow us to cheaply construct a dataset of 500 stories and 2000 questions. By screening workers (with grammar tests) and stories (with grading), we have ensured that the data is the same quality as another set that we manually edited, but at one tenth the editing cost. By being open-domain, yet carefully restricted, we hope MCTest will serve to encourage research and provide a clear metric for advancement on the machine comprehension of text. 1 Reading Comprehension A major goal for NLP is for machines to be able to understand text as well as people. Several research disciplines are focused on this problem: for example, information extraction, relation extraction, semantic role labeling, and recognizing textual entailment. Yet these techniques are necessarily evaluated individually, rather than by how much they advance us towards the end goal. On the other hand, the goal of semantic parsing is the machine comprehension of text (MCT), yet its evaluation requires adherence to a specific knowledge representation, and it is currently unclear what the best representation is, for open-domain text. We believe that it is useful to directly tackle the top-level task of MCT. For this, we need a way to measure progress. One common method for evaluating someone’s understanding of text is by giving them a multiple-choice reading comprehension test. This has the advantage that it is objectively gradable (vs. essays) yet may test a range of abilities such as causal or counterfactual reasoning, inference among relations, or just basic understanding of the world in which the passage is set. Therefore, we propose a multiple-choice reading comprehension task as a way to evaluate progress on MCT. We have built a reading comprehension dataset containing 500 fictional stories, with 4 multiple choice questions per story. It was built using methods which can easily scale to at least 5000 stories, since the stories were created, and the curation was done, using crowd sourcing almost entirely, at a total of $4.00 per story. We plan to periodically update the dataset to ensure that methods are not overfitting to the existing data. The dataset is open-domain, yet restricted to concepts and words that a 7 year old is expected to understand. This task is still beyond the capability of today’s computers and algorithms.

745 citations

Proceedings ArticleDOI
01 Jan 2012
TL;DR: This work presents an accurate gait analysis system that is economical and non-intrusive, based on the Kinect sensor and thus can extract comprehensive gait information from all parts of the body, and suggests that the proposed technique can be used for continuous gait tracking at home.
Abstract: Human gait is an important indicator of health, with applications ranging from diagnosis, monitoring, and rehabilitation. In practice, the use of gait analysis has been limited. Existing gait analysis systems are either expensive, intrusive, or require well-controlled environments such as a clinic or a laboratory. We present an accurate gait analysis system that is economical and non-intrusive. Our system is based on the Kinect sensor and thus can extract comprehensive gait information from all parts of the body. Beyond standard stride information, we also measure arm kinematics, demonstrating the wide range of parameters that can be extracted. We further improve over existing work by using information from the entire body to more accurately measure stride intervals. Our system requires no markers or battery-powered sensors, and instead relies on a single, inexpensive commodity 3D sensor with a large preexisting install base. We suggest that the proposed technique can be used for continuous gait tracking at home.

329 citations

Patent
26 Jun 2002
TL;DR: In this paper, a mask is generated from a document image to reduce an estimate of compression for the combined size of the mask and multiple layers of the document image, which can then be processed and compressed separately in order to achieve better compression of document image overall.
Abstract: Systems and methods for encoding and decoding document images are disclosed. Document images are segmented into multiple layers according to a mask. The multiple layers are non-binary. The respective layers can then be processed and compressed separately in order to achieve better compression of the document image overall. A mask is generated from a document image. The mask is generated so as to reduce an estimate of compression for the combined size of the mask and multiple layers of the document image. The mask is then employed to segment the document image into the multiple layers. The mask determines or allocates pixels of the document image into respective layers. The mask and the multiple layers are processed and encoded separately so as to improve compression of the document image overall and to improve the speed of so doing. The multiple layers are non-binary images and can, for example, comprise a foreground image and a background image.

198 citations

Patent
29 Dec 2005
TL;DR: A system that facilitates organization of emails comprises a clustering component that clusters a plurality of emails and creates topics for emails by assigning key phrases extracted from emails within one or more clusters as discussed by the authors.
Abstract: A system that facilitates organization of emails comprises a clustering component that clusters a plurality of emails and creates topics for emails by assigning key phrases extracted from emails within one or more clusters. An organization component then utilizes the key phrases to organize documents. Furthermore, the organization component can comprise a probability component that determines a probability that a document belongs to a certain topic.

135 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Book
24 Aug 2012
TL;DR: This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach, and is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Abstract: Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package--PMTK (probabilistic modeling toolkit)--that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

8,059 citations

Posted Content
TL;DR: The Stanford Question Answering Dataset (SQuAD) as mentioned in this paper is a reading comprehension dataset consisting of 100,000+ questions posed by crowdworkers on a set of Wikipedia articles, where the answer to each question is a segment of text from the corresponding reading passage.
Abstract: We present the Stanford Question Answering Dataset (SQuAD), a new reading comprehension dataset consisting of 100,000+ questions posed by crowdworkers on a set of Wikipedia articles, where the answer to each question is a segment of text from the corresponding reading passage. We analyze the dataset to understand the types of reasoning required to answer the questions, leaning heavily on dependency and constituency trees. We build a strong logistic regression model, which achieves an F1 score of 51.0%, a significant improvement over a simple baseline (20%). However, human performance (86.8%) is much higher, indicating that the dataset presents a good challenge problem for future research. The dataset is freely available at this https URL

4,336 citations

Proceedings ArticleDOI
16 Jun 2016
TL;DR: The Stanford Question Answering Dataset (SQuAD) as mentioned in this paper is a reading comprehension dataset consisting of 100,000+ questions posed by crowdworkers on a set of Wikipedia articles, where the answer to each question is a segment of text from the corresponding reading passage.
Abstract: We present the Stanford Question Answering Dataset (SQuAD), a new reading comprehension dataset consisting of 100,000+ questions posed by crowdworkers on a set of Wikipedia articles, where the answer to each question is a segment of text from the corresponding reading passage. We analyze the dataset to understand the types of reasoning required to answer the questions, leaning heavily on dependency and constituency trees. We build a strong logistic regression model, which achieves an F1 score of 51.0%, a significant improvement over a simple baseline (20%). However, human performance (86.8%) is much higher, indicating that the dataset presents a good challenge problem for future research. The dataset is freely available at this https URL

3,667 citations

Proceedings ArticleDOI
07 Dec 2015
TL;DR: The task of free-form and open-ended Visual Question Answering (VQA) is proposed, given an image and a natural language question about the image, the task is to provide an accurate natural language answer.
Abstract: We propose the task of free-form and open-ended Visual Question Answering (VQA). Given an image and a natural language question about the image, the task is to provide an accurate natural language answer. Mirroring real-world scenarios, such as helping the visually impaired, both the questions and answers are open-ended. Visual questions selectively target different areas of an image, including background details and underlying context. As a result, a system that succeeds at VQA typically needs a more detailed understanding of the image and complex reasoning than a system producing generic image captions. Moreover, VQA is amenable to automatic evaluation, since many open-ended answers contain only a few words or a closed set of answers that can be provided in a multiple-choice format. We provide a dataset containing ~0.25M images, ~0.76M questions, and ~10M answers (www.visualqa.org), and discuss the information it provides. Numerous baselines for VQA are provided and compared with human performance.

3,513 citations