scispace - formally typeset
Search or ask a question
Author

Erin Mentuch

Other affiliations: University of Toronto, McMaster-Carr
Bio: Erin Mentuch is an academic researcher from McMaster University. The author has contributed to research in topics: Galaxy & Star formation. The author has an hindex of 15, co-authored 29 publications receiving 1739 citations. Previous affiliations of Erin Mentuch include University of Toronto & McMaster-Carr.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors presented the results of Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) imaging of a sample of 19 high-mass passively evolving galaxies with 1.2 < z < 2, taken primarily from the Gemini Deep Deep Survey (GDDS).
Abstract: We present the results of Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) imaging of a sample of 19 high-mass passively evolving galaxies with 1.2 < z < 2, taken primarily from the Gemini Deep Deep Survey (GDDS). Around 80% of galaxies in our GDDS sample have spectra dominated by stars with ages 1 Gyr. Our rest-frame R-band images show that most of these objects have compact regular morphologies which follow the classical R 1/4 law. These galaxies scatter along a tight sequence in the size versus surface brightness parameter space which defines the Kormendy relation. Around one-third (3/10) of the massive red objects in the GDDS sample are extraordinarily compact, with effective radii under 1 kpc. Our NICMOS observations allow the detection of such systems more robustly than is possible with optical (rest-frame UV) data, and while similar systems have been seen at z 2, this is the first time such systems have been detected in a rest-frame optical survey at 1.2 < z < 2. We refer to these compact galaxies as red nuggets, and note that similarly compact massive galaxies are completely absent in the nearby universe. We introduce a new stellar mass Kormendy relation (stellar mass density versus size) which we use to single out the effects of size evolution from those of luminosity and color evolution in stellar populations. The 1 < z < 2 passive galaxies have mass densities that are an order of magnitude larger then early-type galaxies today and are comparable to the compact distant red galaxies at 2 < z < 3. We briefly consider mechanisms for size evolution in contemporary models focusing on equal-mass mergers and adiabatic expansion driven by stellar mass loss. Neither of these mechanisms appears to be able to transform the high-redshift Kormendy relation into its local counterpart, leaving the origin and fate of these compact red nuggets unresolved.

371 citations

Journal ArticleDOI
TL;DR: In this paper, the Herschel Spectral and Photometric Imaging Receiver Fourier Transform Spectrometer (Herschel SPIRE-FTS) observations of Arp 220, a nearby ultra-luminous infrared galaxy, were presented.
Abstract: We present Herschel Spectral and Photometric Imaging Receiver Fourier Transform Spectrometer (Herschel SPIRE-FTS) observations of Arp 220, a nearby ultra-luminous infrared galaxy. The FTS provides continuous spectral coverage from 190 to 670 {mu}m, a wavelength region that is either very difficult to observe or completely inaccessible from the ground. The spectrum provides a good measurement of the continuum and detection of several molecular and atomic species. We detect luminous CO (J = 4-3 to 13-12) and water rotational transitions with comparable total luminosity {approx}2 Multiplication-Sign 10{sup 8} L{sub Sun }; very high-J transitions of HCN (J = 12-11 to 17-16) in absorption; strong absorption features of rare species such as OH{sup +}, H{sub 2}O{sup +}, and HF; and atomic lines of [C I] and [N II]. The modeling of the continuum shows that the dust is warm, with T = 66 K, and has an unusually large optical depth, with {tau}{sub dust} {approx} 5 at 100 {mu}m. The total far-infrared luminosity of Arp 220 is L{sub FIR} {approx} 2 Multiplication-Sign 10{sup 12} L{sub Sun }. Non-LTE modeling of the extinction corrected CO rotational transitions shows that the spectral line energy distribution of CO is fit well by two temperature components:more » cold molecular gas at T {approx} 50 K and warm molecular gas at T {approx} 1350{sup +280}{sub -100} K (the inferred temperatures are much lower if CO line fluxes are not corrected for dust extinction). These two components are not in pressure equilibrium. The mass of the warm gas is 10% of the cold gas, but it dominates the CO luminosity. The ratio of total CO luminosity to the total FIR luminosity is L{sub CO}/L{sub FIR} {approx} 10{sup -4} (the most luminous lines, such as J = 6-5, have L{sub CO,J=6-5}/L{sub FIR} {approx} 10{sup -5}). The temperature of the warm gas is in excellent agreement with the observations of H{sub 2} rotational lines. At 1350 K, H{sub 2} dominates the cooling ({approx}20 L{sub Sun} M{sup -1}{sub Sun }) in the interstellar medium compared to CO ({approx}0.4 L{sub Sun} M{sup -1}{sub Sun }). We have ruled out photodissociation regions, X-ray-dominated regions, and cosmic rays as likely sources of excitation of this warm molecular gas, and found that only a non-ionizing source can heat this gas; the mechanical energy from supernovae and stellar winds is able to satisfy the large energy budget of {approx}20 L{sub Sun} M{sup -1}{sub Sun }. Analysis of the very high-J lines of HCN strongly indicates that they are solely populated by infrared pumping of photons at 14 {mu}m. This mechanism requires an intense radiation field with T > 350 K. We detect a massive molecular outflow in Arp 220 from the analysis of strong P Cygni line profiles observed in OH{sup +}, H{sub 2}O{sup +}, and H{sub 2}O. The outflow has a mass {approx}> 10{sup 7} M{sub Sun} and is bound to the nuclei with velocity {approx}< 250 km s{sup -1}. The large column densities observed for these molecular ions strongly favor the existence of an X-ray luminous AGN (10{sup 44} erg s{sup -1}) in Arp 220.« less

335 citations

Journal ArticleDOI
TL;DR: Herschel observations of 62 early-type galaxies (ETGs), including 39 galaxies morphologically classified as S0+S0a and 23 galaxies classified as ellipticals using SPIRE at 250, 350, and 500 μm as part of the volume-limited Herschel Reference Survey (HRS) as discussed by the authors.
Abstract: We present Herschel observations of 62 early-type galaxies (ETGs), including 39 galaxies morphologically classified as S0+S0a and 23 galaxies classified as ellipticals using SPIRE at 250, 350, and 500 μm as part of the volume-limited Herschel Reference Survey (HRS). We detect dust emission in 24% of the ellipticals and 62% of the S0s. The mean temperature of the dust is Td = 23.9 ± 0.8 K, warmer than that found for late-type galaxies in the Virgo Cluster. The mean dust mass for the entire detected early-type sample is logMd = 6.1 ± 0.1 M ☉ with a mean dust-to-stellar-mass ratio of log(Md /M *) = –4.3 ± 0.1. Including the non-detections, these parameters are logMd = 5.6 ± 0.1 and log(Md /M *) = –5.1 ± 0.1, respectively. The average dust-to-stellar-mass ratio for the early-type sample is fifty times lower, with larger dispersion, than the spiral galaxies observed as part of the HRS, and there is an order-of-magnitude decline in Md /M * between the S0s and ellipticals. We use UV and optical photometry to show that virtually all the galaxies lie close to the red sequence yet the large number of detections of cool dust, the gas-to-dust ratios, and the ratios of far-infrared to radio emission all suggest that many ETGs contain a cool interstellar medium similar to that in late-type galaxies. We show that the sizes of the dust sources in S0s are much smaller than those in early-type spirals and the decrease in the dust-to-stellar-mass ratio from early-type spirals to S0s cannot simply be explained by an increase in the bulge-to-disk ratio. These results suggest that the disks in S0s contain much less dust (and presumably gas) than the disks of early-type spirals and this cannot be explained simply by current environmental effects, such as ram-pressure stripping. The wide range in the dust-to-stellar-mass ratio for ETGs and the lack of a correlation between dust mass and optical luminosity suggest that much of the dust in the ETGs detected by Herschel has been acquired as the result of interactions, although we show these are unlikely to have had a major effect on the stellar masses of the ETGs. The Herschel observations tentatively suggest that in the most massive systems, the mass of interstellar medium is unconnected to the evolution of the stellar populations in these galaxies.

194 citations

Journal ArticleDOI
TL;DR: In this paper, the authors estimate the ages of five pre-main-sequence groups found within 100 pc of the Sun: the TW Hydrae association, η Chamaeleontis cluster, β Pictoris moving group, Tucanae-Horologium association, and AB Doradus moving group.
Abstract: We estimate cluster ages from lithium depletion in five pre-main-sequence groups found within 100 pc of the Sun: the TW Hydrae association, η Chamaeleontis cluster, β Pictoris moving group, Tucanae-Horologium association, and AB Doradus moving group. We determine surface gravities, effective temperatures, and lithium abundances for over 900 spectra through least-squares fitting to model-atmosphere spectra. For each group, we compare the dependence of lithium abundance on temperature with isochrones from pre-main-sequence evolutionary tracks to obtain model-dependent ages. We find that the η Cha cluster and the TW Hydrae association are the youngest, with ages of 12+/-6 Myr and 12+/-8 Myr, respectively, followed by the β Pic moving group at 21+/-9 Myr, the Tucanae-Horologium association at 27+/-11 Myr, and the AB Dor moving group at an age of at least 45 Myr (whereby we can only set a lower limit, since the models-unlike real stars-do not show much lithium depletion beyond this age). Here the ordering is robust, but the precise ages depend on our choice of both atmospheric and evolutionary models. As a result, while our ages are consistent with estimates based on Hertzsprung-Russell isochrone fitting and dynamical expansion, they are not yet more precise. Our observations do show that with improved models, much stronger constraints should be feasible, as the intrinsic uncertainties, as measured from the scatter between measurements from different spectra of the same star, are very low: around 10 K in effective temperature, 0.05 dex in surface gravity, and 0.03 dex in lithium abundance.

178 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an analysis of the size growth seen in early-type galaxies over 10 Gyr of cosmic time, based on a homogeneous synthesis of published data from 16 spectroscopic surveys observed at similar spatial resolution.
Abstract: We present an analysis of the size growth seen in early-type galaxies over 10 Gyr of cosmic time. Our analysis is based on a homogeneous synthesis of published data from 16 spectroscopic surveys observed at similar spatial resolution, augmented by new measurements for galaxies in the Gemini Deep Deep Survey. In total, our sample contains structural data for 465 galaxies (mainly early-type) in the redshift range 0.2 < z < 2.7. The size evolution of passively evolving galaxies over this redshift range is gradual and continuous, with no evidence for an end or change to the process around z ~ 1, as has been hinted at by some surveys which analyze subsets of the data in isolation. The size growth appears to be independent of stellar mass, with the mass-normalized half-light radius scaling with redshift as Re ∝(1 + z)–1.62 ± 0.34. Surprisingly, this power law seems to be in good agreement with the recently reported continuous size evolution of UV-bright galaxies in the redshift range z ~ 0.5-3.5. It is also in accordance with the predictions from recent theoretical models.

175 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, supermassive black holes (BHs) have been found in 85 galaxies by dynamical modeling of spatially resolved kinematics, and it has been shown that BHs and bulges coevolve by regulating each other's growth.
Abstract: Supermassive black holes (BHs) have been found in 85 galaxies by dynamical modeling of spatially resolved kinematics. The Hubble Space Telescope revolutionized BH research by advancing the subject from its proof-of-concept phase into quantitative studies of BH demographics. Most influential was the discovery of a tight correlation between BH mass and the velocity dispersion σ of the bulge component of the host galaxy. Together with similar correlations with bulge luminosity and mass, this led to the widespread belief that BHs and bulges coevolve by regulating each other's growth. Conclusions based on one set of correlations from in brightest cluster ellipticals to in the smallest galaxies dominated BH work for more than a decade. New results are now replacing this simple story with a richer and more plausible picture in which BHs correlate differently with different galaxy components. A reasonable aim is to use this progress to refine our understanding of BH-galaxy coevolution. BHs with masses of 105−106M...

2,804 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the theoretical underpinning, techniques, and results of efforts to estimate the CO-to-H2 conversion factor in different environments, and recommend a conversion factor XCO = 2×10 20 cm −2 (K km s −1 ) −1 with ±30% uncertainty.
Abstract: CO line emission represents the most accessible and widely used tracer of the molecular interstellar medium. This renders the translation of observed CO intensity into total H2 gas mass critical to understand star formation and the interstellar medium in our Galaxy and beyond. We review the theoretical underpinning, techniques, and results of efforts to estimate this CO-to-H2 “conversion factor,” XCO, in different environments. In the Milky Way disk, we recommend a conversion factor XCO = 2×10 20 cm −2 (K km s −1 ) −1 with ±30% uncertainty. Studies of other “normal galaxies” return similar values in Milky Way-like disks, but with greater scatter and systematic uncertainty. Departures from this Galactic conversion factor are both observed and expected. Dust-based determinations, theoretical arguments, and scaling relations all suggest that XCO increases with decreasing metallicity, turning up sharply below metallicity ≈ 1/3–1/2 solar in a manner consistent with model predictions that identify shielding as a key parameter. Based on spectral line modeling and dust observations, XCO appears to drop in the central, bright regions of some but not all galaxies, often coincident with regions of bright CO emission and high stellar surface density. This lower XCO is also present in the overwhelmingly molecular interstellar medium of starburst galaxies, where several lines of evidence point to a lower CO-to-H2 conversion factor. At high redshift, direct evidence regarding the conversion factor remains scarce; we review what is known based on dynamical modeling and other arguments. Subject headings: ISM: general — ISM: molecules — galaxies: ISM — radio lines: ISM

2,004 citations

Journal ArticleDOI
TL;DR: In this article, the intrinsic colors and temperatures of 5-30 Myr old pre-main sequence (pre-MS) stars were analyzed using optical spectra taken with the SMARTS 1.5m telescope.
Abstract: We present an analysis of the intrinsic colors and temperatures of 5-30 Myr old pre-main sequence (pre-MS) stars using the F0 through M9 type members of nearby, negligibly reddened groups: η Cha cluster, TW Hydra Association, β Pic Moving Group, and Tucana-Horologium Association. To check the consistency of spectral types from the literature, we estimate new spectral types for 52 nearby pre-MS stars with spectral types F3 through M4 using optical spectra taken with the SMARTS 1.5m telescope. Combining these new types with published spectral types, and photometry from the literature (Johnson-Cousins BV IC, 2MASS JHKS and WISE W1, W2, W3, and W4), we derive a new empirical spectral type-color sequence for 5-30 Myr old pre-MS stars. Colors for pre-MS stars match dwarf colors for some spectral types and colors, but for other spectral types and colors, deviations can exceed 0.3 mag. We estimate effective temperatures (Teff) and bolometric corrections (BCs) for our pre-MS star sample through comparing their photometry to synthetic photometry generated using the BT-Settl grid of model atmosphere spectra. We derive a new Teff and BC scale for pre-MS stars, which should be a more appropriate match for T Tauri stars than often-adopted dwarf star scales. While our new Teff scale for pre-MS stars is within ≃100 K of dwarfs at a given spectral type for stars

1,811 citations

Posted Content
TL;DR: Kormendy and Ho as mentioned in this paper proposed a method to estimate the BH masses for galaxies with active nuclei (AGNs) based on the observational criteria that are used to classify classical and pseudo bulges.
Abstract: This is the Supplemental Material to Kormendy and Ho 2013, ARAA, 51, 511 (arXiv:1304.7762). Section S1 summarizes indirect methods that are used to estimate black hole (BH) masses for galaxies with active nuclei (AGNs). Section S2 lists the observational criteria that are used to classify classical and pseudo bulges. The (pseudo)bulge classifications used in the main paper are not based on physical interpretation; rather, they are based on these observational criteria. Section S3 supplements the BH database in Section 5 of the main paper and Section S4 here. It discusses corrections to galaxy and BH parameters, most importantly to 2MASS K-band apparent magnitudes. It presents evidence that corrections are needed because 2MASS misses light at large radii when the images of galaxies subtend large angles on the sky or have shallow outer brightness gradients. Section S4 reproduces essentially verbatim the first part of Section 5 in the main paper, the BH database. It includes the list of BH and host-galaxy properties (Tables 2 and 3). Its most important purpose is to provide all of the notes on individual objects.

1,774 citations

Journal ArticleDOI
TL;DR: In this article, the intrinsic colors and temperatures of 5-30 Myr old pre-main sequence (pre-MS) stars using the F0 through M9 type members of nearby, negligibly reddened groups: Eta Cha cluster, TW Hydra Association, Beta Pic Moving Group, and Tucana-Horologium Association.
Abstract: We present an analysis of the intrinsic colors and temperatures of 5-30 Myr old pre-main sequence (pre-MS) stars using the F0 through M9 type members of nearby, negligibly reddened groups: Eta Cha cluster, TW Hydra Association, Beta Pic Moving Group, and Tucana-Horologium Association. To check the consistency of spectral types from the literature, we estimate new spectral types for 52 nearby pre-MS stars with spectral types F3 through M4 using optical spectra taken with the SMARTS 1.5-m telescope. Combining these new types with published spectral types, and photometry from the literature (Johnson-Cousins BVIc, 2MASS JHKs and WISE W1, W2, W3, and W4), we derive a new empirical spectral type-color sequence for 5-30 Myr old pre-MS stars. Colors for pre-MS stars match dwarf colors for some spectral types and colors, but for other spectral types and colors, deviations can exceed 0.3 mag. We estimate effective temperatures (Teff) and bolometric corrections (BCs) for our pre-MS star sample through comparing their photometry to synthetic photometry generated using the BT-Settl grid of model atmosphere spectra. We derive a new Teff and BC scale for pre-MS stars, which should be a more appropriate match for T Tauri stars than often-adopted dwarf star scales. While our new Teff scale for pre-MS stars is within ~100 K of dwarfs at a given spectral type for stars

1,183 citations