scispace - formally typeset
Search or ask a question
Author

Erman Timurdogan

Other affiliations: Koç University
Bio: Erman Timurdogan is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Silicon photonics & Phased-array optics. The author has an hindex of 23, co-authored 97 publications receiving 3048 citations. Previous affiliations of Erman Timurdogan include Koç University.


Papers
More filters
Journal ArticleDOI
10 Jan 2013-Nature
TL;DR: This work demonstrates that a robust design, together with state-of-the-art complementary metal-oxide–semiconductor technology, allows large-scale NPAs to be implemented on compact and inexpensive nanophotonic chips and therefore extends the functionalities of phased arrays beyond conventional beam focusing and steering, opening up possibilities for large- scale deployment.
Abstract: A large-scale silicon nanophotonic phased array with more than 4,000 antennas is demonstrated using a state-of-the-art complementary metal-oxide–semiconductor (CMOS) process, enabling arbitrary holograms with tunability, which brings phased arrays to many new technological territories. Nanophotonic approaches allow the construction of chip-scale arrays of optical nanoantennas capable of producing radiation patterns in the far field. This could be useful for a range of applications in communications, LADAR (laser detection and ranging) and three-dimensional holography. Until now this technology has been restricted to one-dimensional or small two-dimensional arrays. This paper reports the construction of a large-scale silicon nanophotonic phased array containing 4,096 optical nanoantennas balanced in power and aligned in phase. The array was used to generate a complex radiation pattern—the MIT logo—in the far field. The authors show that this type of nanophotonic phased array can be actively tuned, and in some cases the beam is steerable. Electromagnetic phased arrays at radio frequencies are well known and have enabled applications ranging from communications to radar, broadcasting and astronomy1. The ability to generate arbitrary radiation patterns with large-scale phased arrays has long been pursued. Although it is extremely expensive and cumbersome to deploy large-scale radiofrequency phased arrays2, optical phased arrays have a unique advantage in that the much shorter optical wavelength holds promise for large-scale integration3. However, the short optical wavelength also imposes stringent requirements on fabrication. As a consequence, although optical phased arrays have been studied with various platforms4,5,6,7,8 and recently with chip-scale nanophotonics9,10,11,12, all of the demonstrations so far are restricted to one-dimensional or small-scale two-dimensional arrays. Here we report the demonstration of a large-scale two-dimensional nanophotonic phased array (NPA), in which 64 × 64 (4,096) optical nanoantennas are densely integrated on a silicon chip within a footprint of 576 μm × 576 μm with all of the nanoantennas precisely balanced in power and aligned in phase to generate a designed, sophisticated radiation pattern in the far field. We also show that active phase tunability can be realized in the proposed NPA by demonstrating dynamic beam steering and shaping with an 8 × 8 array. This work demonstrates that a robust design, together with state-of-the-art complementary metal-oxide–semiconductor technology, allows large-scale NPAs to be implemented on compact and inexpensive nanophotonic chips. In turn, this enables arbitrary radiation pattern generation using NPAs and therefore extends the functionalities of phased arrays beyond conventional beam focusing and steering, opening up possibilities for large-scale deployment in applications such as communication, laser detection and ranging, three-dimensional holography and biomedical sciences, to name just a few.

1,065 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate a silicon modulator operating with less than one femtojoule energy and are able to compensate for thermal drift over a 7.5°C temperature range.
Abstract: Optical modulators on silicon promise to deliver ultralow power communication networks between or within computer chips. Here, the authors demonstrate a silicon modulator operating with less than one femtojoule energy and are able to compensate for thermal drift over a 7.5 °C temperature range.

379 citations

Journal ArticleDOI
TL;DR: In this paper, high-performance integrated optical phased arrays along with first-of-their-kind light detection and ranging (LiDAR) and free-space data communication demonstrators are presented.
Abstract: We present high-performance integrated optical phased arrays along with first-of-their-kind light detection and ranging (LiDAR) and free-space data communication demonstrators. First, record-performance optical phased array components are shown with low-power phase shifters and high-directionality waveguide grating antennas. Then, one-dimensional (1-D) 512-element optical phased arrays are demonstrated with record low-power operation ( $ 1 mW total), large steering ranges, and high-speed two-dimensional (2-D) beam steering ( $ 30 $\mu$ s phase shifter time constant). Next, by utilizing optical phased arrays, we show coherent 2-D solid-state LiDAR on diffusive targets with simultaneous velocity extraction at a range of nearly 200 m. In addition, the first demonstration of 3-D coherent LiDAR with optical phased arrays is presented with raster-scanning arrays. Finally, lens-free chip-to-chip free-space optical communication links up to 50 m are shown, including a demonstration of a steerable transmitter to multiple optical phased array receivers at a 1 Gb/s data rate. This paper shows the most advanced silicon photonics solid-state beam steering to date with relevant demonstrators in practical applications.

326 citations

Journal ArticleDOI
TL;DR: Using the same silicon nitride platform and phased array architecture, it is demonstrated that the first large-aperture visible nanophotonic phased array at 635 nm with an aperture size of 0.064°×0.074° is demonstrated, to the best of the authors' knowledge.
Abstract: We demonstrate passive large-scale nanophotonic phased arrays in a CMOS-compatible silicon photonic platform. Silicon nitride waveguides are used to allow for higher input power and lower phase variation compared to a silicon-based distribution network. A phased array at an infrared wavelength of 1550 nm is demonstrated with an ultra-large aperture size of 4 mm×4 mm, achieving a record small and near diffraction-limited spot size of 0.021°×0.021° with a side lobe suppression of 10 dB. A main beam power of 400 mW is observed. Using the same silicon nitride platform and phased array architecture, we also demonstrate, to the best of our knowledge, the first large-aperture visible nanophotonic phased array at 635 nm with an aperture size of 0.5 mm×0.5 mm and a spot size of 0.064°×0.074°.

244 citations

Journal ArticleDOI
TL;DR: In this paper, direct-current fields across p-i-n junctions in silicon ridge waveguides were applied to perturb the permittivity of the direct-c. Kerr effect and achieve phase-only modulation and second-harmonic generation.
Abstract: The symmetry of crystalline silicon inhibits a second-order optical nonlinear susceptibility, χ(2), in complementary metal–oxide–semiconductor-compatible silicon photonic platforms. However, χ(2) is required for important processes such as phase-only modulation, second-harmonic generation (SHG) and sum/difference frequency generation. Here, we break the crystalline symmetry by applying direct-current fields across p–i–n junctions in silicon ridge waveguides and induce a χ(2) proportional to the large χ(3) of silicon. The obtained χ(2) is first used to perturb the permittivity (the direct-current Kerr effect) and achieve phase-only modulation. Second, the spatial distribution of χ(2) is altered by periodically patterning p–i–n junctions to quasi-phase-match pump and second-harmonic modes and realize SHG. We measure a maximum SHG efficiency of P2ω/Pω2 = 13 ± 0.5% W−1 at λω = 2.29 µm and with field-induced χ(2) = 41 ± 1.5 pm V–1. We expect such field-induced χ(2) in silicon to lead to a new class of complex integrated devices such as carrier-envelope offset frequency stabilizers, terahertz generators, optical parametric oscillators and chirp-free modulators. The application of d.c. fields across p–i–n junctions in silicon ridge waveguides leads to crystal symmetry breaking. This induces a second-order optical nonlinear susceptibility that enables phase-only modulation and second-harmonic generation with an efficiency of ∼13% W–1 at 2.29 µm.

229 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This Review focuses on recent developments on flat, ultrathin optical components dubbed 'metasurfaces' that produce abrupt changes over the scale of the free-space wavelength in the phase, amplitude and/or polarization of a light beam.
Abstract: Metamaterials are artificially fabricated materials that allow for the control of light and acoustic waves in a manner that is not possible in nature. This Review covers the recent developments in the study of so-called metasurfaces, which offer the possibility of controlling light with ultrathin, planar optical components. Conventional optical components such as lenses, waveplates and holograms rely on light propagation over distances much larger than the wavelength to shape wavefronts. In this way substantial changes of the amplitude, phase or polarization of light waves are gradually accumulated along the optical path. This Review focuses on recent developments on flat, ultrathin optical components dubbed 'metasurfaces' that produce abrupt changes over the scale of the free-space wavelength in the phase, amplitude and/or polarization of a light beam. Metasurfaces are generally created by assembling arrays of miniature, anisotropic light scatterers (that is, resonators such as optical antennas). The spacing between antennas and their dimensions are much smaller than the wavelength. As a result the metasurfaces, on account of Huygens principle, are able to mould optical wavefronts into arbitrary shapes with subwavelength resolution by introducing spatial variations in the optical response of the light scatterers. Such gradient metasurfaces go beyond the well-established technology of frequency selective surfaces made of periodic structures and are extending to new spectral regions the functionalities of conventional microwave and millimetre-wave transmit-arrays and reflect-arrays. Metasurfaces can also be created by using ultrathin films of materials with large optical losses. By using the controllable abrupt phase shifts associated with reflection or transmission of light waves at the interface between lossy materials, such metasurfaces operate like optically thin cavities that strongly modify the light spectrum. Technology opportunities in various spectral regions and their potential advantages in replacing existing optical components are discussed.

4,613 citations

Journal ArticleDOI
01 Jul 2017
TL;DR: A new architecture for a fully optical neural network is demonstrated that enables a computational speed enhancement of at least two orders of magnitude and three order of magnitude in power efficiency over state-of-the-art electronics.
Abstract: Artificial Neural Networks have dramatically improved performance for many machine learning tasks. We demonstrate a new architecture for a fully optical neural network that enables a computational speed enhancement of at least two orders of magnitude and three orders of magnitude in power efficiency over state-of-the-art electronics.

1,955 citations

Journal ArticleDOI
TL;DR: Ni et al. as discussed by the authors presented ultra-thin plasmonic holograms that control amplitude and phase in the visible region and are just 30 nm thick, which is comparable to the light wavelength used.
Abstract: Holographic techniques provide phase and amplitude information for images of objects, but normally the hologram thickness is comparable to the light wavelength used. Ni et al. present ultra-thin plasmonic holograms that control amplitude and phase in the visible region and are just 30 nm thick.

1,243 citations

Journal ArticleDOI
10 Jan 2013-Nature
TL;DR: This work demonstrates that a robust design, together with state-of-the-art complementary metal-oxide–semiconductor technology, allows large-scale NPAs to be implemented on compact and inexpensive nanophotonic chips and therefore extends the functionalities of phased arrays beyond conventional beam focusing and steering, opening up possibilities for large- scale deployment.
Abstract: A large-scale silicon nanophotonic phased array with more than 4,000 antennas is demonstrated using a state-of-the-art complementary metal-oxide–semiconductor (CMOS) process, enabling arbitrary holograms with tunability, which brings phased arrays to many new technological territories. Nanophotonic approaches allow the construction of chip-scale arrays of optical nanoantennas capable of producing radiation patterns in the far field. This could be useful for a range of applications in communications, LADAR (laser detection and ranging) and three-dimensional holography. Until now this technology has been restricted to one-dimensional or small two-dimensional arrays. This paper reports the construction of a large-scale silicon nanophotonic phased array containing 4,096 optical nanoantennas balanced in power and aligned in phase. The array was used to generate a complex radiation pattern—the MIT logo—in the far field. The authors show that this type of nanophotonic phased array can be actively tuned, and in some cases the beam is steerable. Electromagnetic phased arrays at radio frequencies are well known and have enabled applications ranging from communications to radar, broadcasting and astronomy1. The ability to generate arbitrary radiation patterns with large-scale phased arrays has long been pursued. Although it is extremely expensive and cumbersome to deploy large-scale radiofrequency phased arrays2, optical phased arrays have a unique advantage in that the much shorter optical wavelength holds promise for large-scale integration3. However, the short optical wavelength also imposes stringent requirements on fabrication. As a consequence, although optical phased arrays have been studied with various platforms4,5,6,7,8 and recently with chip-scale nanophotonics9,10,11,12, all of the demonstrations so far are restricted to one-dimensional or small-scale two-dimensional arrays. Here we report the demonstration of a large-scale two-dimensional nanophotonic phased array (NPA), in which 64 × 64 (4,096) optical nanoantennas are densely integrated on a silicon chip within a footprint of 576 μm × 576 μm with all of the nanoantennas precisely balanced in power and aligned in phase to generate a designed, sophisticated radiation pattern in the far field. We also show that active phase tunability can be realized in the proposed NPA by demonstrating dynamic beam steering and shaping with an 8 × 8 array. This work demonstrates that a robust design, together with state-of-the-art complementary metal-oxide–semiconductor technology, allows large-scale NPAs to be implemented on compact and inexpensive nanophotonic chips. In turn, this enables arbitrary radiation pattern generation using NPAs and therefore extends the functionalities of phased arrays beyond conventional beam focusing and steering, opening up possibilities for large-scale deployment in applications such as communication, laser detection and ranging, three-dimensional holography and biomedical sciences, to name just a few.

1,065 citations

Journal ArticleDOI
24 Dec 2015-Nature
TL;DR: This demonstration could represent the beginning of an era of chip-scale electronic–photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers.
Abstract: An electronic–photonic microprocessor chip manufactured using a conventional microelectronics foundry process is demonstrated; the chip contains 70 million transistors and 850 photonic components and directly uses light to communicate to other chips. The rapid transfer of data between chips in computer systems and data centres has become one of the bottlenecks in modern information processing. One way of increasing speeds is to use optical connections rather than electrical wires and the past decade has seen significant efforts to develop silicon-based nanophotonic approaches to integrate such links within silicon chips, but incompatibility between the manufacturing processes used in electronics and photonics has proved a hindrance. Now Chen Sun et al. describe a 'system on a chip' microprocessor that successfully integrates electronics and photonics yet is produced using standard microelectronic chip fabrication techniques. The resulting microprocessor combines 70 million transistors and 850 photonic components and can communicate optically with the outside world. This result promises a way forward for new fast, low-power computing systems architectures. Data transport across short electrical wires is limited by both bandwidth and power density, which creates a performance bottleneck for semiconductor microchips in modern computer systems—from mobile phones to large-scale data centres. These limitations can be overcome1,2,3 by using optical communications based on chip-scale electronic–photonic systems4,5,6,7 enabled by silicon-based nanophotonic devices8. However, combining electronics and photonics on the same chip has proved challenging, owing to microchip manufacturing conflicts between electronics and photonics. Consequently, current electronic–photonic chips9,10,11 are limited to niche manufacturing processes and include only a few optical devices alongside simple circuits. Here we report an electronic–photonic system on a single chip integrating over 70 million transistors and 850 photonic components that work together to provide logic, memory, and interconnect functions. This system is a realization of a microprocessor that uses on-chip photonic devices to directly communicate with other chips using light. To integrate electronics and photonics at the scale of a microprocessor chip, we adopt a ‘zero-change’ approach to the integration of photonics. Instead of developing a custom process to enable the fabrication of photonics12, which would complicate or eliminate the possibility of integration with state-of-the-art transistors at large scale and at high yield, we design optical devices using a standard microelectronics foundry process that is used for modern microprocessors13,14,15,16. This demonstration could represent the beginning of an era of chip-scale electronic–photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers.

1,058 citations