scispace - formally typeset
Search or ask a question
Author

Ernest H. Nickel

Bio: Ernest H. Nickel is an academic researcher from Commonwealth Scientific and Industrial Research Organisation. The author has contributed to research in topics: Synthetic substance & Standardization. The author has an hindex of 22, co-authored 76 publications receiving 5458 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The International Mineralogical Association's approved amphibole nomenclature has been revised to simplify it, make it more consistent with divisions generally at 50%, define prefixes and modifiers more precisely, and include new amphibole species discovered and named since 1978, when the previous scheme was approved.
Abstract: The International Mineralogical Association's approved amphibole nomenclature has been revised to simplify it, make it more consistent with divisions generally at 50%, define prefixes and modifiers more precisely, and include new amphibole species discovered and named since 1978, when the previous scheme was approved. The same reference axes form the basis of the new scheme and most names are little changed, but compound species names like tremolitic hornblende (now magnesiohornblende) are abolished, as are crossite (now glaucophane or ferroglaucophane or magnesioriebeckite or riebeckite), tirodite (now manganocummingtonite), and dannemorite (now manganogrunerite). The 50% rule has been broken only to retain tremolite and actinolite as in the 1978 scheme; the sodic-calcic amphibole range has therefore been expanded. Alkali amphiboles are now sodic amphiboles. The use of hyphens is defined. New amphibole names approved since 1978 include nyboite, leakeite, kornite, ungarettiite, sadanagaite, and cannilloite. All abandoned names are listed. The formulae and source of the amphibole end-member names are listed and procedures outlined to calculate Fe (super 3+) and Fe (super 2+) where not determined by analysis.

3,510 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a review of zeolite nomenclature and propose a method for the recognition of separate species in topologically distinctive compositional series in which different extra-framework cations are the most abundant in atomic proportions.
Abstract: This report embodies recommendations on zeolite nomenclature approved by the International Mineralogical Association Commission on New Minerals and Mineral Names. In a working definition of a zeolite mineral used for this review, interrupted tetrahedral framework structures are accepted where other zeolitic properties prevail, and complete substitution by elements other than Si and Al is allowed. Separate species are recognized in topologically distinctive compositional series in which different extra-framework cations are the most abundant in atomic proportions. To name these, the appropriate chemical symbol is attached by a hyphen to the series name as a suffix except for the names harmotome. pollucite and wairakite in the phillipsite and analcime series. Differences in space-group symmetry and in order-disorder relationships in zeolites having the same topologically distinctive framework do not in general provide adequate grounds for recognition of separate species. Zeolite species are not to be distinguished solely on Si:Al ratio except for heulandite (Si:Al or =4.0). Dehydration, partial hydration, and over-hydration are not sufficient grounds for the recognition of separate species of zeolites. Use of the term "ideal formula" should be avoided in referring to a simplified or averaged formula of a zeolite. Newly recognized species in compositional series are as follows: brewsterite-Sr, -Ba: chabazite-Ca, -Na, -K; clinoptilolite-K, -Na, -Ca; dachiardite-Ca, -Na; erionite-Na, -K, -Ca: faujasite-Na, -Ca, -Mg; ferrierite-Mg, -K, -Na; gmelinite-Na, -Ca, -K; heulandite-Ca, -Na, -K, -Sr; levyne-Ca, -Na; paulingite-K, -Ca; phillipsite-Na, -Ca, -K; stilbite-Ca, -Na. Key references, type locality, origin of name, chemical data, IZA structure-type symbols, space-group symmetry, unit-cell dimensions, and comments on structure are listed for 13 compositional series. 82 accepted zeolite mineral species, and three of doubtful status. Herschelite, leonhardite, svetlozarite, and wellsite are discredited as mineral species names. Obsolete and discredited names are listed.

397 citations

Journal ArticleDOI
TL;DR: In this paper, a general reexamination of the systematics of sulfosalts is presented, especially with regard to chemical substitutions and modular analysis of complex crystal structures, and six main crystal-chemical sub-groups are distinguished.
Abstract: This report deals with a general reexamination of the systematics of sulfosalts. It represents an update of the activity of the Sulfosalt Sub-Committee within the Commission on Ore Mineralogy of the International Mineralogical Association, in connection with the Commission on New Minerals, Nomenclature and Classification (CNMNC-IMA). Part I presents generali- ties of sulfosalt definition and nomenclature. After an extended chemical definition of sulfosalts, attention is focused on "classic" sulfosalts with As 3+ ,S b 3+ ,B i 3+ or Te 4+ as cations, corresponding to the general formula (Me + , Me' 2+ , etc.)x ((Bi, Sb, As) 3+ , Te 4+ )y ((S, Se, Te) 2− )z (Me, Me': various metals). General aspects of their chemistry and classification principles are summarized, especially with regard to chemical substitutions and modular analysis of complex crystal structures. On this basis, Part II presents a review of sulfosalt systematics. Six main crystal-chemical sub-groups are distinguished (plus some unclassified species), con- cerning more than 220 valid mineral species. Among others whose status is questioned are those considered to be varieties of well-defined species; minerals with ill-defined X-ray data; those that are possibly identical species; and those that represent the potential revalidation of old species. More than 50 crystal structures still remain unsolved, among which about a half probably corresponds to new structure types.

255 citations

Journal ArticleDOI
TL;DR: A new procedure has been put in place in order to facilitate the future proposal and naming of new mineral groups within the IMA-CNMNC framework.
Abstract: A simplified definition of a mineral group is given on the basis of structural and compositional aspects. Then a hier- archical scheme for group nomenclature and mineral classification is introduced and applied to recent nomenclature proposals. A new procedure has been put in place in order to facilitate the future proposal and naming of new mineral groups within the IMA-CNMNC framework.

201 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The International Mineralogical Association's approved amphibole nomenclature has been revised to simplify it, make it more consistent with divisions generally at 50%, define prefixes and modifiers more precisely, and include new amphibole species discovered and named since 1978, when the previous scheme was approved.
Abstract: The International Mineralogical Association's approved amphibole nomenclature has been revised to simplify it, make it more consistent with divisions generally at 50%, define prefixes and modifiers more precisely, and include new amphibole species discovered and named since 1978, when the previous scheme was approved. The same reference axes form the basis of the new scheme and most names are little changed, but compound species names like tremolitic hornblende (now magnesiohornblende) are abolished, as are crossite (now glaucophane or ferroglaucophane or magnesioriebeckite or riebeckite), tirodite (now manganocummingtonite), and dannemorite (now manganogrunerite). The 50% rule has been broken only to retain tremolite and actinolite as in the 1978 scheme; the sodic-calcic amphibole range has therefore been expanded. Alkali amphiboles are now sodic amphiboles. The use of hyphens is defined. New amphibole names approved since 1978 include nyboite, leakeite, kornite, ungarettiite, sadanagaite, and cannilloite. All abandoned names are listed. The formulae and source of the amphibole end-member names are listed and procedures outlined to calculate Fe (super 3+) and Fe (super 2+) where not determined by analysis.

3,510 citations

Journal ArticleDOI
TL;DR: The International Mineralogical Association's approved amphibole nomenclature has been revised to simplify it, make it more consistent with divisions generally at 50%, define prefixes and modifiers more precisely, and include new amphibole species discovered and named since 1978, when the previous scheme was approved.
Abstract: The International Mineralogical Association's approved amphibole nomenclature has been revised to simplify it, make it more consistent with divisions generally at 50%, define prefixes and modifiers more precisely, and include new amphibole species discovered and named since 1978, when the previous scheme was approved. The same reference axes form the basis of the new scheme and most names are little changed, but compound species names like tremolitic hornblende (now magnesiohornblende) are abolished, as are crossite (now glaucophane or ferroglaucophane or magnesioriebeckite or riebeckite), tirodite (now manganocummingtonite), and dannemorite (now manganogrunerite). The 50% rule has been broken only to retain tremolite and actinolite as in the 1978 scheme; the sodic-calcic amphibole range has therefore been expanded. Alkali amphiboles are now sodic amphiboles. The use of hyphens is defined. New amphibole names approved since 1978 include nyboite, leakeite, kornite, ungarettiite, sadanagaite, and cannilloite. All abandoned names are listed. The formulae and source of the amphibole end-member names are listed and procedures outlined to calculate Fe (super 3+) and Fe (super 2+) where not determined by analysis.

2,965 citations

Journal ArticleDOI
Nobuo Morimoto1
TL;DR: The final report on the nomenclature of pyroxenes by the Subcommittee on Pyroxenes established by the Commission on New Minerals and Mineral Names of the International Mineralogical Association as discussed by the authors.
Abstract: This is the final report on the nomenclature of pyroxenes by the Subcommittee on Pyroxenes established by the Commission on New Minerals and Mineral Names of the International Mineralogical Association. The recommendations of the Subcommittee as put forward in this report have been formally accepted by the Commission. Accepted and widely used names have been chemically defined, by combining new and conventional methods, to agree as far as possible with the consensus of present use. Twenty names are formally accepted, among which thirteen are used to represent the end-members of definite chemical compositions. In common binary solid-solution series, species names are given to the two end-members by the “50% rule”. Adjectival modifiers for pyroxene mineral names are defined to indicate unusual amounts of chemical constituents. This report includes a list of 105 previously used pyroxene names that have been formally discarded by the Commission.

1,756 citations

Journal ArticleDOI
TL;DR: In this article, a rigorous analysis of the physical-chemical, compositional and textural relationships of amphibole stability and the development of new thermobarometric formulations for amphibole-bearing calc-alkaline products of subduction-related systems is presented.
Abstract: This work focuses on a rigorous analysis of the physical–chemical, compositional and textural relationships of amphibole stability and the development of new thermobarometric formulations for amphibole-bearing calc-alkaline products of subduction-related systems Literature experimental results (550–1,120°C, 021) and are inferred to represent xenocrysts of crustal or mantle materials Most experimental results on calc-alkaline suites have been found to be unsuitable for using in thermobarometric calibrations due to the high Al# (>021) of amphiboles and high Al2O3/SiO2 ratios of the coexisting melts The pre-eruptive crystallization of consistent amphiboles is confined to relatively narrow physical–chemical ranges, next to their dehydration curves The widespread occurrence of amphiboles with dehydration (breakdown) rims made of anhydrous phases and/or glass, related to sub-volcanic processes such as magma mixing and/or slow ascent during extrusion, confirms that crystal destabilization occurs with relatively low T–P shifts At the stability curves, the variance of the system decreases so that amphibole composition and physical–chemical conditions are strictly linked to each other This allowed us to retrieve some empirical thermobarometric formulations which work independently with different compositional components (ie Si*, AlT, Mg*, [6]Al*) of a single phase (amphibole), and are therefore easily applicable to all types of calc-alkaline volcanic products (including hybrid andesites) The Si*-sensitive thermometer and the fO2–Mg* equation account for accuracies of ±22°C (σest) and 04 log units (maximum error), respectively The uncertainties of the AlT-sensitive barometer increase with pressure and decrease with temperature Near the P–T stability curve, the error is 35%) and lower-T magmas, the uncertainty increases up to 24%, consistent with depth uncertainties of 04 km, at 90 MPa (~34 km), and 79 km, at 800 MPa (~30 km), respectively For magnesiohornblendes, the [6]Al*-sensitive hygrometer has an accuracy of 04 wt% (σest) whereas for magnesiohastingsite and tschermakitic pargasite species, H2Omelt uncertainties can be as high as 15% relative The thermobarometric results obtained with the application of these equations to calc-alkaline amphibole-bearing products were finally, and successfully, crosschecked on several subduction-related volcanoes, through complementary methodologies such as pre-eruptive seismicity (volcano-tectonic earthquake locations and frequency), seismic tomography, Fe–Ti oxides, amphibole–plagioclase, plagioclase–liquid equilibria thermobarometry and melt inclusion studies A user-friendly spreadsheet (ie AMP-TBxls) to calculate the physical–chemical conditions of amphibole crystallization is also provided

865 citations