scispace - formally typeset
Search or ask a question

Showing papers by "Ernst Detlef Schulze published in 1991"


Journal ArticleDOI
TL;DR: The result confirms earlier conclusions from gas exchange measurements that gaseous air pollutants did no long-lasting damage in an area where such damage was expected and the problem of separation of ammonium or nitrate use by roots from different soil horizons is discussed.
Abstract: Natural carbon and nitrogen isotope ratios were measured in different compartments (needles and twigs of different ages and crown positions, litter, understorey vegetation, roots and soils of different horizons) on 5 plots of a healthy and on 8 plots of a declining Norway spruce (Picea abies (L.) Karst.) forest in the Fichtelgebirge (NE Bavaria, Germany), which has recently been described in detail (Oren et al. 1988a; Schulze et al. 1989). The δ13C values of needles did not differ between sites or change consistently with needle age, but did decrease from the sun-to the shade-crown. This result confirms earlier conclusions from gas exchange measurements that gaseous air pollutants did no long-lasting damage in an area where such damage was expected. Twigs (δ13C between-25.3 and-27.8‰) were significantly less depleted in 13C than needles (δ13C between-27.3 and-29.1‰), and δ13C in twigs increased consistently with age. The δ15N values of needles ranged between-2.5 and-4.1‰ and varied according to stand and age. In young needles δ15N decreased with needle age, but remained constant or increased in needles that were 2 or 3 years old. Needles from the healthy site were more depleted in 15N than those from the declining site. The difference between sites was greater in old needles than in young ones. This differentiation presumably reflects an earlier onset of nitrogen reallocation in needles of the declining stand. δ15N values in twigs were more negative than in needles (-3.5 to-5.2‰) and showed age- and stand-dependent trends that were similar to the needles. δ15N values of roots and soil samples increased at both stands with soil depth from-3.5 in the organic layer to +4‰ in the mineral soil. The δ15N values of roots from the mineral soil were different from those of twigs and needles. Roots from the shallower organic layer had values similar to twigs and needles. Thus, the bulk of the assimilated nitrogen was presumably taken up by the roots from the organic layer. The problem of separation of ammonium or nitrate use by roots from different soil horizons is discussed.

320 citations


Journal ArticleDOI
01 Mar 1991-Planta
TL;DR: It is proposed that the amount of Rubisco in the wildtype represents a balance between the demands of light, water and nitrogen utilisation and it is argued that other photosynthetic enzymes are also decreased once Rubisco decreases to the point at which it becomes strongly limiting for photosynthesis.
Abstract: Experiments were carried out to determine how decreased expression of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) affects photosynthetic metabolism in ambient growth conditions. In a series of tobacco (Nicotiana tabacum L.) plants containing progressively smaller amounts of Rubisco the rate of photosynthesis was measured under conditions similar to those in which the plants had been grown (310 μmol photons · m(-2) · s(-1), 350 μbar CO2, 22° C). (i) There was only a marginal inhibition (6%) of photosynthesis when Rubisco was decreased to about 60% of the amount in the wildtype. The reduced amount of Rubisco was compensated for by an increase in Rubisco activation (rising from 60 to 100%), with minor contributions from an increase of its substrates (ribulose-1,5-bisphosphate and the internal CO2 concentration) and a decrease of its product (glycerate-3-phosphate). (ii) The decreased amount of Rubisco was accompanied by an increased ATP/ADP ratio that may be causally linked to the increased activation of Rubisco. An increase of highenergy-state chlorophyll fluorescence shows that thylakoid membrane energisation and high-energy-state-dependent energy dissipation at photosystem two had also increased. (iii) A further decrease of Rubisco (in the range of 50-20% of the wildtype level) resulted in a strong and proportional inhibition of CO2 assimilation. This was accompanied by a decrease of fructose-1,6-bisphosphatase activity, coupling-factor 1 (CF1)-ATP-synthase protein, NADP-malate dehydrogenase protein, and chlorophyll. The chlorophyll a/b ratio did not change, and enolase and sucrose-phosphate synthase activity did not decrease. It is argued that other photosynthetic enzymes are also decreased once Rubisco decreases to the point at which it becomes strongly limiting for photosynthesis. (iv) It is proposed that the amount of Rubisco in the wildtype represents a balance between the demands of light, water and nitrogen utilisation. The wildtype overinvests about 15% more protein in Rubisco than is needed to avoid a strict Rubisco limitation of photosynthesis. However, this "excess" Rubisco allows the wildtype to operate with lower thylakoid energisation, and decreased high-energy-state-dependent energy dissipation, hence increasing light-use efficiency by about 6%. It also allows the wildtype to operate with a lower internal CO2 concentration in the leaf and a lower stomatal conductance at a given rate of photosynthesis, so that instantaneous water-use efficiency is marginally (8%) increased.

281 citations


Journal ArticleDOI
TL;DR: N2 fixation was associated with reduced intrinsic water use efficiency and higher δ15N-values of Mimosaeae are associated with lower carbon isotope ratios (δ13C value), while the opposite trends were found in non-Mimosaceae, in which N-concentration increased with δ 15N, but δ12C was unaffected.
Abstract: Nitrogen (N2) fixation was estimated along an aridity gradient in Namibia from the natural abundance of 15N (δ15N value) in 11 woody species of the Mimosacease which were compared with the δ15N values in 11 woody non-Mimosaceae Averaging all species and habitats the calculated contribution of N2 fixation (N f ) to leaf nitrogen (N) concentration of Mimosaceae averaged about 30%, with large variation between and within species While in Acacia albida N f was only 2%, it was 49% in Acacia hereroensis and Dichrostachys cinerea, and reached 71% in Acacia melifera In the majority of species N f was 10–30% There was a marked variation in background δ15N values along the aridity gradient, with the highest δ15N values in the lowland savanna The difference between δ15N values of Mimosaceae and non-Mimosaceae, which is assumed to result mainly from N2 fixation, was also largest in the lowland savanna Variations in δ15N of Mimosaceae did not affect N concentrations, but higher δ15N-values of Mimosaeae are associated with lower carbon isotope ratios (δ13C value) N2 fixation was associated with reduced intrinsic water use efficiency The opposite trends were found in non-Mimosaceae, in which N-concentration increased with δ15N, but δ13C was unaffected The large variation among species and sites is discussed

197 citations


Journal ArticleDOI
01 Mar 1991-Planta
TL;DR: Examples of photosynthetic oscillations in saturating irradiance and CO2 are suppressed in decreased-activity transformants before the steady-state rate of photosynthesis is affected, providing direct evidence that these oscillations reveal the presence of “excess” Rubisco.
Abstract: Transgenic tobacco (Nicotiana tabacum L.) plants transformed with 'antisense' rbcS to produce a series of plants with a progressive decrease in the amount of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) have been used to investigate the contribution of Rubsico to the control of photosynthesis at different irradiance, CO2 concentrations and vapour-pressure deficits. Assimilation rates, transpiration, the internal CO2 concentration and chlorophyll fluorescence were measured in each plant. (i) The flux-control coefficient of Rubisco was estimated from the slope of the plot of Rubisco content versus assimilation rate. The flux-control coefficient had a value of 0.8 or more in high irradiance, (1050 μmol·m(-2)·s(-1)), low-vapour pressure deficit (4 mbar) and ambient CO2 (350 μbar). Control was marginal in enhanced CO2 (450 μbar) or low light (310 μmol·m(-2)·s(-1)) and was also decreased at high vapour-pressure deficit (17 mbar). No control was exerted in 5% CO2. (ii) The flux-control coefficients of Rubisco were compared with the fractional demand placed on the calculated available Rubisco capacity. Only a marginal control on photosynthetic flux is exerted by Rubisco until over 50% of the available capacity is being used. Control increases as utilisation rises to 80%, and approaches unity (i.e. strict limitation) when more than 80% of the available capacity is being used. (iii) In low light, plants with reduced Rubisco have very high energy-dependent quenching of chlorophyll fluorescence (qE) and a decreased apparent quantum yield. It is argued that Rubisco still exerts marginal control in these conditions because decreased Rubisco leads to increased thylakoid energisation and high-energy dependent dissipation of light energy, and lower light-harvesting efficiency. (iv) The flux-control coefficient of stomata for photosynthesis was calculated from the flux-control coefficient of Rubisco and the internal CO2 concentration, by applying the connectivity theorem. Control by the stomata varies between zero and about 0.25. It is increased by increased irradiance, decreased CO2 or decreased vapour-pressure deficit. (v) Photosynthetic oscillations in saturating irradiance and CO2 are suppressed in decreased-activity transformants before the steady-state rate of photosynthesis is affected. This provides direct evidence that these oscillations reveal the presence of "excess" Rubisco. (vi) Comparison of the flux-control coefficients of Rubisco with mechanistic models of photosynthesis provides direct support for the reliability of these models in conditions where Rubisco has a flux-control coefficient approach unity (i.e. "limits" photosynthesis), but also indicates that these models are less useful in conditions where control is shared between Rubisco and other components of the photosynthetic apparatus.

133 citations


Journal ArticleDOI
TL;DR: Transgenic tobacco plants tranformed with antisense to rbcS to decrease expression of ribulose-1,5bisphosphate carboxylase-oxygenase (Rubisco) have been used to investigate whether Rubisco is limiting for photosynthesis and plant growth and whether biomass allocation and storage of carbohydrate and nitrogen are regulated in response to decreased rate of photosynthesis.
Abstract: Summary Transgenic tobacco plants tranformed with antisense to rbcS to decrease expression of ribulose-1,5bisphosphate carboxylase-oxygenase (Rubisco) have been used to investigate (a) whether Rubisco is limiting for photosynthesis and plant growth and (b) whether biomass allocation and storage of carbohydrate and nitrogen are regulated in response to decreased rate of photosynthesis. The rate of photosynthesis (measured in growth conditions) and plant growth were not strongly inhibited until almost half of the Rubisco was removed. When Rubisco was decreased further there was a large decrease of photosynthesis and plant growth. When photosynthesis decreased in the ‘antisense’ plants there was an increase in the shoothoot ratio and the specific leaf area. As a result, the leaf area ratio (leaf area per g plant dry weight) increased 3-4-fold. This shows that tobacco compensates for decreased photosynthesis by maximizing leaf area. The decrease of photosynthesis also resulted in lower starch and free hexose in the leaf, but the volume of the diurnal starch turnover was largely maintained. This indicates that partitioning to starch is regulated to decrease non-productive accumulation of starch, but still maintain a pool of transient starch for export during the night. The decrease of photosynthesis was also accompanied by a large increase of the nitrogen1 carbon balance, due to a large accumulation of nitrate in the leaf. This shows that assimilation of nitrate is inhibited in response to low availability of photo

127 citations


Journal ArticleDOI
TL;DR: It is concluded that mutants with a decreased capacity to carry out a particular partial process provide a powerful tool to disect complex mutually interacting systems, and define and quantify causal interactions at the level of whole plant growth.
Abstract: These studies use starch synthesis mutants to quantify the contribution of assimilatory starch to whole plant growth and form. Arabidopsis thaliana (L.) Heynh plants were used with null plastid phosphoglucomutase (T Caspar, SC Huber, CR Sommerville, [1986] Plant Physiol 79; 1-7) or 7% of wild-type ADP-glucose pyrophosphorylase (T-P Lin, T Caspar, CR Sommerville, J Preiss [1988] Plant Physiol 88; 1175-1179). The daily turnover of starch and the rate of biomass increase in the mutants and the wild type were investigated during growth in a 14 hour light/10 hour dark cycle in high irradiance (600 micromoles per square meter per second) and nitrogen (6 millimolar NH(4)NO(3)), in high irradiance and low nitrogen (0.1 millimolar NH(4)NO(3)) or in low irradiance (80 micromoles per square meter per second) and high nitrogen. There is some variability in the data, but the following conclusions can be drawn. Growth was slow in the absence of starch turnover. In high nitrogen conditions, about 1 mole of carbon per gram dry weight per day was incorporated additionally into structural biomass for every one mole of carbon turned over as starch per gram dry weight per day. In low nitrogen, the gain was much lower. This indicates that temporary storage of photosynthate is important for rapid growth in high nitrogen, but not in low nitrogen when carbohydrate is in excess. Starch-deficient plants showed the usual decrease of the shoot/root ratio in low nitrogen and increase of the ratio in low light. This shows that adjustment of plant form to nitrogen nutrition and irradiance is not mediated via regulation of photosynthate partitioning in the leaf. Starch deficient plants had lower shoot/root ratios than the wild type and the nitrogen concentration in their leaves was increased. It is discussed how interactions between carbohydrate allocation, respiration and growth at the organ and whole plant level generate these changes. We conclude that mutants with a decreased capacity to carry out a particular partial process provide a powerful tool to disect complex mutually interacting systems, and define and quantify causal interactions at the level of whole plant growth.

110 citations


Journal ArticleDOI
01 Dec 1991-Planta
TL;DR: The leafs internal cuticle appears to play a special role in channelling the internal water flow during a water shortage, causing turgor to decrease in the former more than in the latter.
Abstract: Turgor, and osmotic and water potentials of subsidiary cells, epidermal cells and mesophyll cells were measured with a pressure probe and a nanoliter osmometer in intact transpiring leaves of Tradescantia virginiana L. Xylem water potential was manipulated by changing air humidity, light, and water supply. In a transpiring leaf the water potential of mesophyll cells was lower, but turgor was higher, than in cells surrounding the stomatal cavity owing to the presence of a cuticle layer which covers the internal surface of subsidiary and guard cells. Cuticular transpiration from the outer leaf surface was negligibly small. When stomata closed in dry air, transpiration decreased despite an increasing vapor-pressure difference between leaf and air, and the water potential of subsidiary cells dropped to the level of the water potential in mesophyll cells. We suggest that the observed decrease of transpiration at increasing vapor-pressure difference can be attributed to a shortage of water supply to the guard cells from subsidiary cells, causing turgor to decrease in the former more than in the latter. The leafs internal cuticle appears to play a special role in channelling the internal water flow during a water shortage.

90 citations


Journal ArticleDOI
TL;DR: Xylem-tapping mistletoe species growing on Mimosaccae, non-Mimosaceae and hosts performing Crassulacean acid metabolism (CAM) were studied along an aridity gradient in the Namib desert and it was calculated that about 60% of the carbon in mistletoes growing on C3 and on CAM hosts originated from the host.
Abstract: Xylem-tapping mistletoe species growing on Mimosaccae, non-Mimosaceae and hosts performing Crassulacean acid metabolism (CAM) were studied along an aridity gradient in the Namib desert. °13C-values of mistletoes became more negative with decreasing nitrogen (N)-concentration in their leaves, while the host plants showed no such relationship. This might suggest that mistletoes regulate their water use efficiency according to the nitrogen supply from the host. However, further inspection of the data indicates that the relations of δ13C-values with leaf nitrogen in mistletoes may result from carbon input from the host. This is especially true for mistletoes growing on CAM plants which exhibit a very high δ13C-value, but show no evidence of CAM. It is calculated that about 60% of the carbon in mistletoes growing on C3 and on CAM hosts originated from the host. The hypothesis of Marshall and Ehleringer (1990) that xylem tapping mistletoes are also carbon parasites could explain the change in δ13C-values with N-supply and the difference in δ13C-values between mistletoes growing on C3 and CAM hosts.

69 citations


Journal ArticleDOI
TL;DR: The use of the δ 15N technique for studying nutrition of carnivorous species and the ecological significance of insect feeding of different growth forms of Drosera growing in a large range of habitats is discussed.
Abstract: Plants of Drosera species, neighbouring noncarnivorous plants, and arthropods on or near each Drosera sp. were collected at 11 contrasting habitat locations in SW Australia. At three of the sites clones of the rare glandless mutant form of D. erythrorhiza were collected alongside fully glandular counterparts. The δ 15N value (15N/14N natural isotope composition) of insect-free leaf and stem fractions was measured, and the data then used to estimate proportional dependence on insect N (%NdI) for the respective species and growth forms of Drosera. The data indicated lower %NdI values for rosette than for self-supporting erect or for climbing vine species. The latter two groups showed an average %NdI value close to 50%. The %NdI increased with length and biomass of climbing but not erect forms of Drosera. δ 15N values of stems were positively correlated with corresponding values for leaves of Drosera. Leaf material was on average significantly more 15N enriched than stems, possibly due to delayed transport of recent insect-derived N, or to discrimination against 15N in transfer from leaf to the rest of the plant. The comparison of δ 15N values of insects and arthropod prey, glandless and glandular plants of D. erythrorhiza indicated %NdI values of 14.3, 12.2 and 32.2 at the respective sites, while matching comparisons based on δ 15N of insect, reference plants and glandular plants proved less definitive, with only one site recording a positive %NdI (value of 10.4%) despite evidence at all sites of feeding on insects by the glandular plants. The use of the δ 15N technique for studying nutrition of carnivorous species and the ecological significance of insect feeding of different growth forms of Drosera growing in a large range of habitats is discussed.

57 citations