scispace - formally typeset
Search or ask a question
Author

Ernst Detlef Schulze

Other affiliations: University of Idaho, University of Utah, University of Würzburg  ...read more
Bio: Ernst Detlef Schulze is an academic researcher from Max Planck Society. The author has contributed to research in topics: Biodiversity & Ecosystem. The author has an hindex of 133, co-authored 670 publications receiving 69504 citations. Previous affiliations of Ernst Detlef Schulze include University of Idaho & University of Utah.


Papers
More filters
Journal ArticleDOI
TL;DR: The decline in Δ in the more arid section may be a function of both low species diversity, and a highly aseasonal and unpredictable rainfall regime.
Abstract: Carbon isotope discrimination (Δ) and nitrogen isotope ratios, N-concentrations and specific leaf area of 50 tree species were investigated along a continental-scale transect through northern Australia over which annual rainfall varied from 1800 mm to 216 mm rainfall. Average specific leaf area (SLA, m2 kg-1) of leaves ranged from 10.7 ± 1.7 (av. ± s.d.) in N2 fixing deciduous trees to 0.8 ± 0.4 in spinescent sclerophylls shrubs. SLA generally decreased with increasing aridity. N2 fixing species had higher leaf N concentration (average N-concentration 20.1 ± 3.7 mgN g-1) than non- N2 fixing (10.8 ± 3.3) or spinescent species (7.05 ± 1.8). Community-averaged Δ was approximately constant at rainfalls above 475 mm (average Δ = 19.4 ± 1.2‰). Where rainfall was less than 475 mm, Δ decreased from 19‰ to 17‰ at 220 mm. Δ was positively correlated with SLA. Δ of deciduous N2 fixing species and spinescent species were 1‰ and 2.4‰ lower than in evergreen sclerophyllous species. Δ in the N2 fixing Allocasuarina was 1.2‰ lower than in non- N2 fixing sclerophyllous species. The δ15N-values indicated N2 fixation only at high rainfall. Burning of the field layer in a Eucalyptus forest had no effect on all measured tree parameters including δ15N, but δ15N increased under grazing conditions to >5‰. The constant value of community averaged Δ between 1800 and 450 mm may be the result of replacement of functional types and species. The decline in Δ in the more arid section may be a function of both low species diversity, and a highly aseasonal and unpredictable rainfall regime.

258 citations

Journal ArticleDOI
TL;DR: In this article, estimates of the carbon balance of forests, grasslands, arable lands and peatlands were used to obtain country-specific estimates of terrestrial carbon balance during the 1990s, showing that forests and grasslands were a net sink for carbon, whereas croplands were carbon sources in all European countries.
Abstract: . We summed estimates of the carbon balance of forests, grasslands, arable lands and peatlands to obtain country-specific estimates of the terrestrial carbon balance during the 1990s. Forests and grasslands were a net sink for carbon, whereas croplands were carbon sources in all European countries. Hence, countries dominated by arable lands tended to be losing carbon from their terrestrial ecosystems, whereas forest-dominated countries tended to be sequestering carbon. In some countries, draining and extraction of peatlands caused substantial reductions in the net carbon balance. Net terrestrial carbon balances were typically an order of magnitude smaller than the fossil fuel-related carbon emissions. Exceptions to this overall picture were countries where population density and industrialization are small. It is, however, of utmost importance to acknowledge that the typically small net carbon balance represents the small difference between two large but opposing fluxes: uptake by forests and grasslands and losses from arable lands and peatlands. This suggests that relatively small changes in either or both of these large component fluxes could induce large effects on the net total, indicating that mitigation schemes should not be discarded a priori. In the absence of carbon-oriented land management, the current net carbon uptake is bound to decline soon. Protecting it will require actions at three levels; a) maintaining the current sink activity of forests, b) altered agricultural management practices to reduce the emissions from arable soils or turn into carbon sinks and c) protecting current large reservoirs (wetlands and old forests), since carbon is lost more rapidly than sequestered.

241 citations

Journal ArticleDOI
TL;DR: It is concluded that species limited by the same nutrient may coexist by drawing on different pools of soil N in a nutrient-deficient environment, and differences among life-forms decrease with increasing N availability.
Abstract: Natural abundances of nitrogen isotopes, δ15N, indicate that, in the same habitat, Alaskan Picea glauca and P. mariana use a different soil nitrogen compartment from the evergreen shrub Vaccinium vitis-idaea or the deciduous grass Calamagrostis canadensis. The very low δ15N values (-7.7 ‰) suggest that (1) Picea mainly uses inorganic nitrogen (probably mainly ammonium) or organic N in fresh litter, (2) Vaccinium (-4.3 ‰) with its ericoid mycorrhizae uses more stable organic matter, and (3) Calamagrostis (+0.9 ‰) exploits deeper soil horizons with higher δ15N values of soil N. We conclude that species limited by the same nutrient may coexist by drawing on different pools of soil N in a nutrient-deficient environment. The differences among life-forms decrease with increasing N availability. The different levels of δ15N are associated with different nitrogen concentrations in leaves, Picea having a lower N concentration (0.62 mmol g-1) than Vaccinium (0.98 mmol g-1) or Calamagrostis (1.33 mmol g-1). An extended vector analysis by Timmer and Armstrong (1987) suggests that N is the most limiting element for Picea in this habitat, causing needle yellowing at N concentrations below 0.5 mmol g-1 or N contents below 2 mmol needle-1. Increasing N supply had an exponential effect on twig and needle growth. Phosphorus, potassium and magnesium are at marginal supply, but no interaction between ammonium supply and needle Mg concentration could be detected. Calcium is in adequate supply on both calcareous and acidic soils. The results are compared with European conditions of excessive N supply from anthropogenic N depositions.

238 citations

Journal ArticleDOI
TL;DR: It is concluded that encouraging farmers to change the intensity of their land use over time could be an important strategy to maintain high biodiversity in grasslands, and a new measure of whole-ecosystem biodiversity, multidiversity is introduced, which integrates the species richness of 49 different organism groups ranging from bacteria to birds.
Abstract: Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18% of the maximum diversity across all grasslands when LUI was static over time but increased to 31% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation.

237 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
TL;DR: Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.
Abstract: Humans are altering the composition of biological communities through a variety of activities that increase rates of species invasions and species extinctions, at all scales, from local to global. These changes in components of the Earth's biodiversity cause concern for ethical and aesthetic reasons, but they also have a strong potential to alter ecosystem properties and the goods and services they provide to humanity. Ecological experiments, observations, and theoretical developments show that ecosystem properties depend greatly on biodiversity in terms of the functional characteristics of organisms present in the ecosystem and the distribution and abundance of those organisms over space and time. Species effects act in concert with the effects of climate, resource availability, and disturbance regimes in influencing ecosystem properties. Human activities can modify all of the above factors; here we focus on modification of these biotic controls. The scientific community has come to a broad consensus on many aspects of the re- lationship between biodiversity and ecosystem functioning, including many points relevant to management of ecosystems. Further progress will require integration of knowledge about biotic and abiotic controls on ecosystem properties, how ecological communities are struc- tured, and the forces driving species extinctions and invasions. To strengthen links to policy and management, we also need to integrate our ecological knowledge with understanding of the social and economic constraints of potential management practices. Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.

6,891 citations

Journal ArticleDOI
08 Aug 2002-Nature
TL;DR: A doubling in global food demand projected for the next 50 years poses huge challenges for the sustainability both of food production and of terrestrial and aquatic ecosystems and the services they provide to society.
Abstract: A doubling in global food demand projected for the next 50 years poses huge challenges for the sustainability both of food production and of terrestrial and aquatic ecosystems and the services they provide to society. Agriculturalists are the principal managers of global useable lands and will shape, perhaps irreversibly, the surface of the Earth in the coming decades. New incentives and policies for ensuring the sustainability of agriculture and ecosystem services will be crucial if we are to meet the demands of improving yields without compromising environmental integrity or public health.

6,569 citations

Journal ArticleDOI
22 Apr 2004-Nature
TL;DR: Reliable quantification of the leaf economics spectrum and its interaction with climate will prove valuable for modelling nutrient fluxes and vegetation boundaries under changing land-use and climate.
Abstract: Bringing together leaf trait data spanning 2,548 species and 175 sites we describe, for the first time at global scale, a universal spectrum of leaf economics consisting of key chemical, structural and physiological properties. The spectrum runs from quick to slow return on investments of nutrients and dry mass in leaves, and operates largely independently of growth form, plant functional type or biome. Categories along the spectrum would, in general, describe leaf economic variation at the global scale better than plant functional types, because functional types overlap substantially in their leaf traits. Overall, modulation of leaf traits and trait relationships by climate is surprisingly modest, although some striking and significant patterns can be seen. Reliable quantification of the leaf economics spectrum and its interaction with climate will prove valuable for modelling nutrient fluxes and vegetation boundaries under changing land-use and climate.

6,360 citations

Journal ArticleDOI
01 Jan 1989
TL;DR: In this article, the physical and enzymatic bases of carbone isotope discrimination during photosynthesis were discussed, noting how knowledge of discrimination can be used to provide additional insight into photosynthetic metabolism and the environmental influences on that process.
Abstract: We discuss the physical and enzymatic bases of carbone isotope discrimination during photosynthesis, noting how knowledge of discrimination can be used to provide additional insight into photosynthetic metabolism and the environmental influences on that process

6,246 citations